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1. Introduction

Semigroups of composition operators acting on the Hardy space H2(D) or the Dirichlet space D have
been extensively studied (see, for example, [3,4,6,12,20,21]).

These are associated with the notion of semiflow () of analytic functions mapping the unit disc D to
itself, and satisfying ¢sy1¢ = s 0 y; here s and t lie either in R, or in a sector of the complex plane. It
is assumed that the mapping (¢, z) — ¢:(z) is jointly continuous. It follows that there exists an analytic
function G on D such that

% =G oy

A semiflow induces composition operators C,, on H?(D) or D, where Cy,, f = f o ¢¢. If it is strongly
continuous, then it has a densely-defined generator A given by Af = Gf’, with G as above. Fuller details
are given later.
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In Section 2 we give a characterisation of analytic semigroups in terms of the properties of G, using
the complex Lumer—Phillips theorem [1] (this is appropriate, since the semigroup is quasicontractive, as
explained below). In addition, we give a complete description of groups of composition operators in terms
of the function G.

The theme of Section 3 is compactness, together with Hilbert—Schmidt and trace-class properties. For
example, we give sufficient conditions on G for the semigroup to be immediately compact; these are nec-
essary and sufficient (and equivalent to eventual compactness) when the semigroup is analytic. We give
examples to illustrate the various possibilities involving the properties of immediate compactness and even-
tual compactness. Although most of our results are obtained in terms of the properties of G, we are also
able to derive results on compactness from the semiflow model ¢;(2) = h=1(e~“*h(z)). In particular we are
able to provide some answers to a question raised by Siskakis [21, Sec. 8] about how the behaviour of such
semigroups depends on the properties of h.

Section 4 is concerned with analytic semigroups and groups of composition operators on the half-plane.
Such operators are never compact.

2. Analytic semigroups and groups of composition operators

Definition 2.1. Let (8,)n>0 be a sequence of positive real numbers. Then H?(f3) is the space of analytic
functions

flz) = Z cn2"
n=0

in the unit disc D that have finite norm

oo 1/2
1£1ls = <Z Icn|2ﬁﬁ> :
n=0

The case (3, = 1 gives the usual Hardy space H?(D).
The case By = 1 and 3,, = \/n for n > 1 provides the Dirichlet space D, which is included in H?(D).
The case (3, = 1/v/n + 1 produces the Bergman space, which contains H?(D).

2.1. General properties of semigroups
A Cy-semigroup (T'(t))¢>0 on a Banach space X is a mapping T : Ry — L£(X) satistying

T(0) =1,
Vt,s 20, T(t+s)=T()oT(s),
Vee X, lim,oT(t)z =z.

A consequence of this definition is the existence of two scalars w > 0 and M > 1 such that for all t € R,
|T(#)] < Me*t. In particular, if M = 1, the semigroup 7T is said to be quasicontractive. If in addition
w = 0, T is a contractive semigroup.

A Cy-semigroup T will be called analytic (or holomorphic) if there exists a sector ¥y = {re'®, r €
Ry, |af < 6} with 6 € (0, 5] and an analytic mapping T : Sy — L(X) such that T is an extension of T’ and

sup [[T(§)]| < oo.
£€ToND
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