
Scalability evaluation of an FPGA-based multi-core architecture
with hardware-enforced domain partitioning

Daniel Kliem ⇑, Sven-Ole Voigt
Institute for Reliable Computing, Hamburg University of Technology (TUHH), Schwarzenbergstraße 95, 21073 Hamburg, Germany

a r t i c l e i n f o

Article history:
Received 29 March 2013
Revised 26 January 2014
Accepted 13 February 2014
Available online 22 February 2014

Keywords:
FPGA
MPSoC
Domain partitioning
Shared memory
Performance evaluation
Bus-centric architecture

a b s t r a c t

There is a trend towards to dense integration of embedded systems for cost, weight, and power savings.
Integration of multiple critical software functions in a single embedded platform requires domain parti-
tioning. Groups of independent software functions exist in isolated domains to maintain individual func-
tional correctness, even in presence of errors. Software solutions such as Real-Time Operating Systems
(RTOS) with time and space partitioning are state-of-the-art segregation approaches. As an alternative
to these existing solutions, we present a robust, reliable, and efficient architecture with segregation sup-
port for safety- and security-critical embedded systems. Our solution hosts different software functions
on a platform with as few hardware components as possible: the System-on-a-Chip (SoC) approach.

The proposed architecture instantiates multiple self-contained soft processor systems on a single chip.
The architecture offers hardware-enforced segregation and is completely transparent to software
applications. We demonstrate this aspect by running multiple segregated instances of unmodified
off-the-shelf Linux systems from a shared memory device. Since our architecture targets reconfigurable
platforms, it is also flexible and can be tailored to application-specific needs at design time.

Segregation is achieved with a hierarchical connection of memory busses by secure bus bridges. The
bridges perform caching, prefetching, and burst accesses to efficiently avoid temporal conflicts on shared
resources. Hence, our secure bridges allow to use soft processors for critical designs.

We implement several prototypes and evaluate them by using novel bus observers for characterization
of bus-centric architectures. Finally, we show the effectiveness of our implemented optimizations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Embedded systems are ubiquitous today. Cost-, weight-, and
power-savings are key drivers for dense integration of embedded
systems. At the same time there is also a demand for steadily
increasing performance.

Consumer electronics, such as personal mobile devices, follow
this trend. They show dense integration of multimedia and com-
munication functions in battery operated devices.

In contrast to that, safety- and security-critical embedded
systems traditionally follow the one-computer-per-function ap-
proach. With increasingly demanding functional requirements this
approach leads to a multitude of networked Electronic Control Units
(ECUs). For instance, state-of-the-art passenger cars are equipped
with 20–70 ECUs [1].

So-called domain partitioning or domain segregation is an ab-
stract concept at the system design level. Software functions are

first grouped according to their safety and security classification.
These groups of equally ranked functions are then treated as iso-
lated domains. Domain partitioning preserves individual integrity
of software functions and avoids error propagation across domain
boundaries. Critical systems that are developed according to
demanding safety requirements, such as avionics software, adhere
to domain partitioning principles.

Domain partitioning implemented in a computing platform can
integrate software functions of different domains on the same
hardware. This reduces the number of necessary ECUs.

Typically, domain segregation of software functions is
implemented as software solution as well. Such pure-software
segregation solutions run on general-purpose processors and
System-on-a-Chip (SoC) platforms. Software solutions are flexible.
For instance the number of domains can be configured at the
design time and is not directly determined by the processing hard-
ware. However, since these software solutions use general-purpose
devices, they lack an important advantage of embedded system
design: co-design of hard- and software.

http://dx.doi.org/10.1016/j.micpro.2014.02.006
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +49 40 42878 3849.
E-mail address: d.kliem@tuhh.de (D. Kliem).

Microprocessors and Microsystems 38 (2014) 845–859

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.02.006&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.02.006
mailto:d.kliem@tuhh.de
http://dx.doi.org/10.1016/j.micpro.2014.02.006
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


Configurable platforms such as FPGAs offer benefits. Hardware
resources can be tailored for each segregated domain on configura-
ble devices. For instance, domains can use interface-combinations
that are not covered by hard-wired general-purpose devices. More-
over, domain-specific accelerators are available. As with software
solutions, the number of segregated domains is chosen by the sys-
tem designer and is not preselected by the device manufacturer.

Configurable devices are flexible at the design-time of the sys-
tem but are static at the run-time of the actual software (at least
if dynamic reconfiguration is not used). This is a most wanted qual-
ity, since the design-time flexibility of the segregation solution is
not traded for its robustness.

Configurable devices also allow to use soft processors. Different
domain-specific architectures can be combined within the same
device. However, despite their obvious advantages, soft processors
on FPGAs are rarely used to host critical software functions. Clock
frequencies of these soft processors are small in comparison to
those of hard-wired devices. It is not expected that clock frequen-
cies of synthesized logic on FPGAs will grow by an order of magni-
tude in the near future.

FPGA technology follows Moore’s Law [7] and we can expect
FPGAs to grow significantly in logic capacity. Devices with over
one million Lookup Tables (LUTs) are available [8]. Luckily, current
FPGA families provide wide and fast memory attachments, mostly
implemented as hard macros that are faster than configurable logic
(Table 1).

To overcome this performance gap, we propose and evaluate an
architecture that combines the specific needs of partitioned soft-
ware with the flexibility of reconfigurable hardware. Recent FPGAs
can accommodate many processing cores in parallel, which oper-
ate from a single shared memory [9,10].

Our architecture instantiates multiple segregated and self-con-
tained systems. Furthermore, it shares available memory band-
width among the systems in a predictable and scalable way.
Secure bus bridges are used to form a segregated hierarchy of
memory busses. The architecture uses soft processors for safety-
and security-critical functions and reaches high assurance levels
with less effort.

Segregated systems must consider disjunctive resource usage in
both the temporal and the spatial dimension. Given the flexibility
of FPGAs, it is trivial to achieve spatial separation: Processors and
interfaces are implemented as truly separate SoCs on a single pro-
grammable chip and memory overlaps are eliminated by address
translation. Hence, we focus on mitigation of temporal conflicts
and present several optimization techniques that deepen and ex-
tend our previous work on this topic [11].

The following sections provide an overview of current research
(Section 2) and established segregation solutions (Section 3). As an
alternative to these solutions, Section 4 presents our proposed
architecture and Section 5 introduces our prototyping environ-
ment. Two secure bridge designs, our main contributions, are then
presented in Section 6. The next sections introduce a dedicated bus
observer (Section 7) for scalability evaluation of the bridge designs
(Section 8) and present an outlook on further improvements

(Section 9). Finally, Section 10 provides a summary of our
contributions.

2. Related work

We are aware of one architecture with similar objectives. Nojiri
et al. present an ASIC implementation that aims at domain parti-
tioning for embedded multi-core processors in the automotive
industry [12].

Their architecture prototype comprises a dual-core system with
a shared L2 cache. They propose a central bus structure with dis-
tributed Physical Partition Controllers (PPCs). The PPCs serve as a
hardware configurable MMU, which restricts the access to periph-
eral devices and partitions the available memory. In case of access
violations, a special exception handler is invoked.

Currently their approach is limited to two different domains – a
real-time and an IT-domain. Even with larger PPC-enabled devices,
the number of domains would still be preselected during expensive
design of the ASIC. The use of configurable devices, as presented
here, allows the system designer to determined the number of
domains.

We target applications with multiple different domains and as-
sume that fine-grained segregated systems are more easily devel-
oped, verified, and maintained. Typically, multiple operational
functions shall reside in segregated domains alongside with main-
tenance and health monitoring functions. That is, we distinguish fi-
ner than real-time versus non-real-time.

With our concept, it is even possible to change the design dur-
ing the system life-cycle. This offers the system designer the
opportunity to cost-effectively deal with late requirement changes.
An ASIC design process does not provide such a flexibility.

Their architecture fulfills the requirements of dense integration
and provides hardware enforced spatial segregation. They do not
focus on temporal segregation of the central bus structure, which
means that they only deal with one aspect of segregation. Espe-
cially the shared L2 cache of the CPUs is a potential source of
non-determinism at run-time.

Our architecture provides segregation at system level instead of
CPU level. These segregated systems have exclusive access to their
own local resources. Moreover, we especially target configurable
platforms that offer more degrees of freedom during design. Sys-
tem designers can tailor local systems to their individual applica-
tions and they can include robust dedicated communication
channels across the domains.

We conclude that both approaches provide robust domain seg-
regation, at least in the spatial dimension, but follow a different
strategy. Nojiri et al. aim at a mass-market general-purpose parti-
tioning solution as required by automotive designs. In contrast to
that, our approach targets low volume but long life-time systems
that are typically found in avionics.

3. An overview of existing segregation solutions

A typical scenario for segregation is to host different software
components on the same platform. The involved software compo-
nents have to meet their individual functional and real-time
requirements although they share resources, e.g., the same CPU.
A shared platform is beneficial to reduce recurring hardware costs
in mass-production markets (e.g., in automotive industry) or to re-
duce weight (e.g., in avionics applications).

There are different methods to establish segregation in a control
unit. The obvious approach uses one processor per function at
board-level. Board-level duplication offers separation but needs
multiple devices and is inflexible in terms of future design
modifications.

Table 1
Clock speed discrepancy (Vendor Data).

CPU/Memory attachment FPGA
family

Max data
width (bits)

Clock rate
(MHz)

Altera Nios II/s [2] Stratix IV 32 240
Gaisler LEON3 [3] Virtex 5 32 125
Xilinx Microblaze [4] Virtex6(-3) 32 303

Altera DDR3 [5] Stratix IV 144 533
Xilinx DDR3 [6] Virtex6(-3) 144 533

846 D. Kliem, S.-O. Voigt / Microprocessors and Microsystems 38 (2014) 845–859



Download English Version:

https://daneshyari.com/en/article/461448

Download Persian Version:

https://daneshyari.com/article/461448

Daneshyari.com

https://daneshyari.com/en/article/461448
https://daneshyari.com/article/461448
https://daneshyari.com

