Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A fundamental solution to the time-periodic Stokes equations

Mads Kyed

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany

ARTICLE INFO

Article history: Received 15 May 2015 Available online 18 January 2016 Submitted by P.G. Lemarie-Rieusset

Keywords: Stokes equations Time-periodic Fundamental solution

ABSTRACT

The concept of a fundamental solution to the time-periodic Stokes equations in dimension $n \ge 2$ is introduced. A fundamental solution is then identified and analyzed. Integrability and pointwise estimates are established.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

Classically, fundamental solutions are defined for systems of linear partial differential equations in \mathbb{R}^n . Specifically, a fundamental solution to the Stokes system $(n \ge 2)$

$$\begin{cases} -\Delta v + \nabla p = f & \text{in } \mathbb{R}^n, \\ \operatorname{div} v = 0 & \text{in } \mathbb{R}^n, \end{cases}$$
(1.1)

with unknowns $v: \mathbb{R}^n \to \mathbb{R}^n, p: \mathbb{R}^n \to \mathbb{R}$ and data $f: \mathbb{R}^n \to \mathbb{R}^n$, is a tensor-field

$$\Gamma_{\mathrm{Stokes}} := \begin{pmatrix} \Gamma_{11}^{\mathrm{S}} & \dots & \Gamma_{1n}^{\mathrm{S}} \\ \vdots & \ddots & \vdots \\ \Gamma_{n1}^{\mathrm{S}} & \dots & \Gamma_{nn}^{\mathrm{S}} \\ \gamma_{1}^{\mathrm{S}} & \dots & \gamma_{n}^{\mathrm{S}} \end{pmatrix} \in \mathscr{S}'(\mathbb{R}^{n})^{(n+1) \times n}$$

that satisfies¹

$$\begin{cases} -\Delta\Gamma_{ij}^{S} + \partial_{i}\gamma_{j}^{S} = \delta_{ij}\delta_{\mathbb{R}^{n}},\\ \partial_{i}\Gamma_{ij}^{S} = 0, \end{cases}$$
(1.2)

http://dx.doi.org/10.1016/j.jmaa.2016.01.016

E-mail address: kyed@mathematik.tu-darmstadt.de.

 $^{^1\,}$ We make use of the Einstein summation convention and implicitly sum over all repeated indices.

⁰⁰²²⁻²⁴⁷X/© 2016 Elsevier Inc. All rights reserved.

where δ_{ij} and $\delta_{\mathbb{R}^n}$ denote the Kronecker delta and delta distribution, respectively. For arbitrary $f \in \mathscr{S}(\mathbb{R}^n)^n$, a solution (v, p) to (1.1) is then given by the componentwise convolution

$$\binom{v}{p} := \Gamma_{\text{Stokes}} * f, \tag{1.3}$$

which at the outset is well-defined in the sense of distributions. In the specific case of the Stokes fundamental solution Γ_{Stokes} above, L^q -integrability and pointwise decay estimates for (v, p) can be established from (1.3). We refer to the standard literature such as [3] and [9] for these well-known results.

The aim of this paper is to identify a fundamental solution to the *time-periodic* Stokes system

$$\begin{cases} \partial_t u - \Delta u + \nabla \mathfrak{p} = f & \text{in } \mathbb{R}^n \times \mathbb{R}, \\ \operatorname{div} u = 0 & \operatorname{in } \mathbb{R}^n \times \mathbb{R}, \\ u(x,t) = u(x,t+\mathcal{T}) \end{cases}$$
(1.4)

with unknowns $u : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ and $\mathfrak{p} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ corresponding to time-periodic data $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ with the same period, that is, $f(x,t) = f(x,t+\mathcal{T})$. Here $\mathcal{T} \in \mathbb{R}$ denotes the (fixed) time-period. Moreover, $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$ denote the spatial and time variable, respectively. The main objective is to establish a framework which enables us to define and identify a fundamental solution Γ_{TPStokes} to (1.4) with the property that a solution (u, \mathfrak{p}) is given by a convolution

$$\binom{u}{\mathfrak{p}} := \Gamma_{\mathrm{TPStokes}} * f. \tag{1.5}$$

Having obtained this goal, we shall then examine to which extent regularity such as L^q -integrability and pointwise estimates of the solution can be derived from (1.5).

Since time-periodic data $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $(x,t) \to f(x,t)$ are non-decaying in t, a framework based on classical convolution in $\mathbb{R}^n \times \mathbb{R}$ cannot be applied. Instead, we reformulate (1.4) as a system of partial differential equations on the locally compact abelian group $G := \mathbb{R}^n \times \mathbb{R}/\mathcal{TZ}$. More specifically, we exploit that \mathcal{T} -time-periodic functions can naturally be identified with mappings on the torus group $\mathbb{T} := \mathbb{R}/\mathcal{TZ}$ in the time variable t. In the setting of the Schwartz–Bruhat space $\mathscr{S}(G)$ and corresponding space of tempered distributions $\mathscr{S}'(G)$, we can then define a fundamental solution Γ_{TPStokes} to (1.4) as a tensor-field

$$\Gamma_{\text{TPStokes}} := \begin{pmatrix} \Gamma_{11}^{\text{TPS}} & \dots & \Gamma_{1n}^{\text{TPS}} \\ \vdots & \ddots & \vdots \\ \Gamma_{n1}^{\text{TPS}} & \dots & \Gamma_{nn}^{\text{TPS}} \\ \gamma_1^{\text{TPS}} & \dots & \gamma_n^{\text{TPS}} \end{pmatrix} \in \mathscr{S}'(G)^{(n+1)\times n}$$
(1.6)

that satisfies

$$\begin{cases} \partial_t \Gamma_{ij}^{\text{TPS}} - \Delta \Gamma_{ij}^{\text{TPS}} + \partial_i \gamma_j^{\text{TPS}} = \delta_{ij} \delta_G, \\ \partial_i \Gamma_{ij}^{\text{TPS}} = 0 \end{cases}$$
(1.7)

in the sense of $\mathscr{S}'(G)$ -distributions. A solution to the time-periodic Stokes system (1.4) is then given by (1.5), provided the convolution is taken over the group G.

The aim in the following is to identify a tensor-field $\Gamma_{\text{TPStokes}} \in \mathscr{S}'(G)^{(n+1)\times n}$ satisfying (1.7). We shall describe Γ_{TPStokes} as a sum of the steady-state Stokes fundamental solution Γ_{Stokes} and a remainder part satisfying remarkably good integrability and pointwise decay estimates. It is well-known that the components of the velocity part $\Gamma^{\text{S}} \in \mathscr{S}'(\mathbb{R}^n)^{n\times n}$ and pressure part $\gamma^{\text{S}} \in \mathscr{S}'(\mathbb{R}^n)^n$ of Γ_{Stokes} are functions Download English Version:

https://daneshyari.com/en/article/4614481

Download Persian Version:

https://daneshyari.com/article/4614481

Daneshyari.com