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A boundary control problem for a nonlinear steady-state heat transfer model ac-
counting for heat radiation effects is considered. The aim of control consists in 
obtaining a prescribed temperature distribution in a part of the model domain 
by controlling the boundary temperature. The solvability of this control problem is 
proven, and optimality conditions are derived. Numerical simulations are presented.
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1. Introduction

Optimal control problems for models of complex heat transfer in scattering media with reflecting bound-
aries are of great importance in connection with engineering applications. A considerable number of works is 
devoted to problems of control of evolutionary systems describing radiative heat transfer (see [1–4,14–17]). 
In the mentioned works, the radiation transfer is described by an integro-differential equation or by its 
approximations. The temperature field is simulated by the conventional evolutionary heat transfer equation 
with additional source terms describing the contribution of the radiative heat transfer.

Among optimal control problems for steady-state models, it is worth to mention the work [12] where an 
optimal control problem for an elliptic semilinear PDE with nonlocal radiation interface conditions modeling 
conductive–radiative heat transfer was considered. This problem arises from the objective to optimize the 
temperature gradient during crystal growth by the physical vapor transport method. Theoretical analysis of 
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optimal boundary control problems for steady-state systems of complex heat transfer is generally an open 
question. The main difficulty of such problems is related, apart from the nonlinear character of complex 
heat transfer equations in state variables, to nonlinearities in control inputs. In [8], a problem of optimal 
boundary multiplicative control for a steady-state complex heat transfer model was studied. The problem 
was formulated as the maximization of the energy outflow from the model domain by controlling reflection 
properties of the boundary. On the basis of new a priori estimates of solutions of the control system, the 
solvability of the optimal control problem was proven. The main result there was the proof of an analogue 
of the bang-bang principle arising in control theory for ordinary differential equations. Notice that there 
is an extensive literature on the bang-bang principle in optimal control of parabolic equations. In optimal 
control of elliptic equations, analogues of this principle are also available (see e.g. [11, Ch. 2, Remark 4.4]).

Problems considered in the present paper are formulated as minimization of a target functional by 
controlling the boundary temperature. The complexity of the theoretical analysis of such problems is caused 
by the following two features of the control system.

First, the control function, describing the boundary temperature, appears with power four in the boundary 
condition for the radiation intensity. Therefore, the proof of solvability of the optimal control problem is 
impossible without additional compactness assumptions on the set of admissible controls. It is reasonable, 
from the point of view of applications, to assume that the set of admissible controls has a finite dimension 
structure. In this case, the solvability of the control problem follows from continuity properties of the 
control-state mapping and the weak lower semicontinuity of the objective functional.

Second, the classical Lagrange principle cannot be applied to the derivation of necessary optimality 
conditions because the constraint operator is not affine with respect to the control. In the present paper, 
necessary optimality conditions are derived using the linearization of the complex heat transfer equations. 
The crucial point of the derivation is the requirement of unique solvability of the linearized system. The last 
question is nontrivial, and therefore sufficient conditions of unique solvability of the linearized and adjoint 
systems are formulated.

A numerical experiment of obtaining a desired temperature distribution in a part of the model domain 
by controlling the boundary temperature is conducted.

2. Problem formulation

The following steady-state normalized diffusion (P1) model (see [7,9,10,13]) describing radiative, conduc-
tive, and convective heat transfer in a bounded domain G ⊂ R

3 is under consideration:

−aΔθ + v · ∇θ + bκa(|θ|θ3 − ϕ) = 0, −αΔϕ + κa(ϕ− |θ|θ3) = 0, (1)

a∂nθ + γ(θ − u)|Γ = 0, α∂nϕ + β(ϕ− u4)|Γ = 0. (2)

Here, θ is the normalized temperature, ϕ the normalized radiation intensity averaged over all directions, 
v a given velocity field, and κa the absorption coefficient. The coefficients β and γ are given functions, and 
the others are given by

a = k

ρcv
, b = 4σn2T 3

max
ρcv

, α = 1
3κ−Aκs

,

where k is the thermal conductivity, cv the specific heat capacity, ρ the density, σ the Stefan–Boltzmann 
constant, n the refractive index, Tmax the maximum temperature in the unnormalized model, κ := κs+κa the 
extinction coefficient (total attenuation factor), and κs the scattering coefficient. The coefficient A ∈ [−1, 1]
describes the anisotropy of scattering. The symbol ∂n denotes the derivative in the outward normal direction 
n on the boundary Γ := ∂G.
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