Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Dirichlet problem for anisotropic prescribed mean curvature equation on unbounded domains

Hongjie Ju^{a,*}, Yannan Liu^b

^a School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, PR China
 ^b School of Sciences, Beijing Technology and Business University, Beijing 100048, PR China

ARTICLE INFO

Article history: Received 14 September 2015 Available online 8 March 2016 Submitted by J. Xiao

Keywords: Dirichlet problem Anisotropic prescribed mean curvature Mean curvature flow with a forcing term Unbounded domain

ABSTRACT

In this paper, we consider the Dirichlet problem for hypersurfaces $\mathcal{M} = \operatorname{graph} u$ of anisotropic prescribed mean curvature H = H(x, u, N) on unbounded domain Ω , where N is the unit normal to \mathcal{M} at (x, u). As a corollary of the result, we obtain the existence of translating solutions to the mean curvature flow with a forcing term on unbounded domains. The approach used here is a modified version of classical Perron's method, where the solutions to minimal surface equation are used as supersolutions and a family of auxiliary functions is constructed as local subsolutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let Ω be a domain in \mathbb{R}^n $(n \ge 2)$, a function $\varphi \in C^0(\partial \Omega)$ and let \mathcal{M} be a hypersurface over Ω given as graph of $u : \Omega \to \mathbb{R}$. We consider the Dirichlet problem:

$$\begin{cases} \frac{1}{n} div \left(\frac{Du}{\sqrt{1+|Du|^2}} \right) = H(x, u, N(Du)), & \text{in } \Omega, \\ u = \varphi, & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $N(Du) = \frac{1}{\sqrt{1+|Du|^2}} (-Du, 1)$ is the upward unit normal vector field of the hypersurface \mathcal{M} .

When Ω is a bounded domain, Serrin [17] solved first the Dirichlet problem (1.1) with the prescribed mean curvature $H = \Lambda(x) \in C^1(\bar{\Omega})$. The result in [17] is that there exists a solution $u \in C^{2,\alpha}(\bar{\Omega})$ provided $\partial \Omega \in C^{2,\alpha}$, $\varphi \in C^{2,\alpha}(\bar{\Omega})$ and the mean curvature $H_{\partial\Omega}$ on the boundary $\partial \Omega$ satisfying

* Corresponding author.

E-mail address: hjju@bupt.edu.cn (H. Ju).

$$H_{\partial\Omega}(x) \ge \frac{n}{n-1} |\Lambda(x)|, \quad \forall \ x \in \partial\Omega,$$
 (1.2)

as well as Marquardt considered in [15] the general case H = H(x, u, N(Du)), see the following theorem.

Theorem 1.1. (See [15].) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with $C^{2,\alpha}$ boundary, $\varphi \in C^0(\partial \Omega)$. If H(x, z, N) satisfies

$$\int_{\Omega} \sup_{z \in \mathbb{R}, N \in \mathbb{S}^n} |H(x, z, N)|^n dx < \omega_n,$$
(1.3)

and H(x, z, N) can be written as $H(x, z, N) = H_1(x, z, N) + H_2(x, z, N)N_{n+1}$ on $\Omega \times \mathbb{R} \times \mathbb{S}^n$, where $H_1, H_2 \in C^1(\bar{\Omega} \times \mathbb{R} \times \mathbb{S}^n) \cap C^{1,\gamma}(\Omega \times \mathbb{R} \times \mathbb{S}^n)$ $(0 < \gamma < 1), D_z H_1 \ge 0$ and

$$H_{\partial\Omega}(x) \ge \frac{n}{n-1} |H_1(x,\varphi(x),\gamma_0(x))|, \quad \forall \ x \in \partial\Omega,$$
(1.4)

then the Dirichlet problem (1.1) has a solution $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$. In the case $D_z H \ge 0$, (1.3) can be replaced by the following condition

$$\left| \int_{\Omega} H(x,0,N(D\eta)) dx \right| < \frac{1-\varepsilon}{n} \int_{\Omega} |D\eta| dx, \quad \forall \ \eta \in C_0^1(\Omega)$$
(1.5)

for some $\varepsilon > 0$ ensure a bound on u. Furthermore, the solution is unique if $D_z H \ge 0$.

Here and below, $H_{\partial\Omega}$ denotes the mean curvature of $\partial\Omega$ with respect to the inner normal, γ_0 is the inward pointing unit normal of $\partial\Omega$, and N_{n+1} is the last coordinate component of normal vector N.

If $H(x, z, N) = \Lambda(x)$ for some C^1 function $\Lambda(x)$, Jin investigated in [9] the existence of solutions to (1.1) on unbounded domains under the assumptions that $0 \leq \Lambda(x) < \frac{n-1}{nM}$ on $\overline{\Omega}$ and $H_{\partial\Omega}(y) > \frac{n}{n-1}\Lambda(y)$ on $\partial\Omega$, where M is a constant depending on domain Ω . The method used in [9] is a modified Perron's method, where the solutions to the minimal surface equation are used as subsolutions and a family of auxiliary functions is constructed as local supersolutions. There are similar Dirichlet problems on unbounded domains for constant mean curvature surfaces in [14] and the equation of translating solution to the powers of mean curvature flow in [10].

Motivated by [15,9,14,10], we consider the Dirichlet problem (1.1) with more general anisotropic prescribed mean curvature H = H(x, u, N(Du)) on more general domains. We mainly refer to the method used in [9,10]. Before stating the main results, we give some assumptions for Ω and H(x, z, N) as follows.

Assumptions for Ω :

 $(\Omega_1) \ \partial \Omega \in C^{2,\alpha}$ with $0 < \alpha < 1$;

 (Ω_2) There are constants N and M > 0 such that

$$\Omega \subset C_N(M) := \{ x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n \mid x_1 > N, x_2^2 + \cdots + x_n^2 < M^2 \}.$$

Assumptions for H(x, z, N):

 (H_0) H(x, z, N) can be written as $H(x, z, N) = H_1(x, z, N) + H_2(x, z, N)N_{n+1}$ on $\Omega \times \mathbb{R} \times \mathbb{S}^n$, where $H_1, H_2 \in C^1(\bar{\Omega} \times \mathbb{R} \times \mathbb{S}^n) \cap C^{1,\gamma}(\Omega \times \mathbb{R} \times \mathbb{S}^n)$ $(0 < \gamma < 1)$, $D_z H_1 \ge 0$ and H_2 is a bounded function, i.e., there is a constant $M_0 > 0$ such that $|H_2(x, z, N)| \le M_0$ for $(x, z, N) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{S}^n$.

Our main result is in the following:

Download English Version:

https://daneshyari.com/en/article/4614503

Download Persian Version:

https://daneshyari.com/article/4614503

Daneshyari.com