Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotic behavior for the critical nonhomogeneous porous medium equation in low dimensions

Razvan Gabriel Iagar^{a,b,*}, Ariel Sánchez^c

^a Instituto de Ciencias Matemáticas (ICMAT), Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049, Madrid, Spain

 ^b Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700, Bucharest, Romania
 ^c Departamento de Matemática Aplicada, Ciencia e Ingenieria de los Materiales y Tecnologia Electrónica, Universidad Rey Juan Carlos, Móstoles, 28933, Madrid, Spain

A R T I C L E I N F O

Article history: Received 24 November 2015 Available online 9 March 2016 Submitted by V. Radulescu

Keywords: Porous medium equation Non-homogeneous media Singular density Asymptotic behavior Radially symmetric solutions Nonlinear diffusion

ABSTRACT

We deal with the large time behavior for a porous medium equation posed in nonhomogeneous media with singular critical density

 $|x|^{-2}\partial_t u(x,t) = \Delta u^m(x,t), \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \ m \ge 1,$

posed in dimensions N = 1 and N = 2, which are also interesting in applied models according to works by Kamin and Rosenau. We deal with the Cauchy problem with bounded and continuous initial data u_0 . We show that in dimension N = 2, the asymptotic profiles are self-similar solutions that vary depending on whether $u_0(0) = 0$ or $u_0(0) = K \in (0, \infty)$. In dimension N = 1, things are strikingly different, and we find new asymptotic profiles of an unusual mixture between self-similar and traveling wave forms. We thus complete the study performed in previous recent works for the higher dimensions $N \ge 3$.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

The goal of this work is to study the asymptotic behavior of solutions to the following nonhomogeneous porous medium equation with critical singular density

$$|x|^{-2}\partial_t u(x,t) = \Delta u^m(x,t), \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \tag{1.1}$$

http://dx.doi.org/10.1016/j.jmaa.2016.03.015 0022-247X/© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author at: Instituto de Ciencias Matemáticas (ICMAT), Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049, Madrid, Spain.

E-mail addresses: razvan.iagar@icmat.es (R.G. Iagar), ariel.sanchez@urjc.es (A. Sánchez).

where $m \ge 1$ and we restrict ourselves to dimensions N = 1 and N = 2. This completes the panorama of the large time behavior of solutions to Eq. (1.1), already studied in dimensions $N \ge 3$ in previous recent works by the authors [18,19]. We will work with the Cauchy problem for initial data satisfying

$$u(x,0) = u_0(x) \in L^{\infty}(\mathbb{R}^N) \cap C(\mathbb{R}^N), \ u_0 \ge 0, \ u_0 \not\equiv 0, \quad \text{for any } x \in \mathbb{R}^N.$$

$$(1.2)$$

Moreover, unless we explicitly state the contrary, we will always consider radially symmetric initial conditions, that is, $u_0(x) = u_0(r)$, r = |x|. The radial symmetry of solutions is an essential restriction in dimension N = 2, since the well-posedness and regularity theory is only established for radially symmetric data, see [25]. It is not our aim to try to extend this theory to non-symmetric data here, but rather to focus on the dynamics of the equation. However, in dimension N = 1, this restriction is readily removed, see Part 2 in Section 5.

Equations such as

$$\varrho(x)\partial_t u(x,t) = \Delta u^m(x,t), \quad (x,t) \in \mathbb{R}^N \times (0,\infty), \tag{1.3}$$

where ρ is a density function with suitable behavior, have been proposed by Kamin and Rosenau in several classical papers [21–23] as a model for thermal propagation by radiation in non-homogeneous plasma. Afterwards, a big development of the mathematical theory associated to Eq. (1.3) begun, assuming that the density satisfies

$$\varrho(x) \sim |x|^{-\gamma}, \quad \text{as } |x| \to \infty,$$

for some $\gamma > 0$, as for example in the following papers [9,10,12,25,32,36,33,34,20,28] where its qualitative properties and asymptotic behavior are studied. In particular, some of these works were also considering purely singular densities such as $\varrho(x) = |x|^{-\gamma}$, and proving that asymptotic profiles for (1.3) come from explicit solutions to equations with singular density. Moreover, it came out that the density $\varrho(x) = |x|^{-2}$ (or $\varrho(x) \sim |x|^{-2}$ as $|x| \to \infty$) is critical for both the qualitative properties (well-posedness, regularity) and large time behavior: indeed, for $\gamma \in (0, 2)$, properties do not depart from those already well investigated of the porous medium equation $u_t = \Delta u^m$, while for $\gamma > 2$, they are different.

Going back to the singular case $\varrho(x) = |x|^{-\gamma}$, its theory developed later, due to the difficulties involved by the presence of the singular coefficient. Some results on qualitative behavior were established in [25], then later in [20, Section 6] and [28, Section 3], the latter two using weighted spaces for well-posedness, and restricting the study to dimensions $N \geq 3$. On the other hand, formal transformations and explicit solutions were established in [12,17], where it becomes clear why $\gamma = 2$ is a critical exponent. Restricting to (1.1), the large time behavior in dimensions $N \geq 3$ has been established recently by the authors [18,19], and the results were quite striking: the presence of both critical density $\gamma = 2$ and the singularity at x = 0 led to many new and unexpected mathematical phenomena, that in the general, non-critical and/or non-singular case do not happen. We recently learned that also the nonhomogeneous equation for the fractional porous medium

$$\varrho(x)\partial_t u = (-\Delta)^s(u^m), \quad m > 1, \ s \in (0,1).$$

has been proposed in [15,16], where the qualitative properties and large time behavior are studied for suitable $\rho(x)$, but again excluding the critical density (that in the fractional case holds for $\gamma = 2s$). More general, weighted forms of the porous medium equation (involving even two different weights) have been proposed in [31,14]. Finally, we found out that the theory for the nonhomogeneous porous medium equation with critical density $\rho(r) \sim r^{-2}$ as $r \to \infty$ found an interesting application in the study of a porous medium equation in the hyperbolic space, see [40].

Download English Version:

https://daneshyari.com/en/article/4614511

Download Persian Version:

https://daneshyari.com/article/4614511

Daneshyari.com