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In this paper, we study the blowup phenomena for the regular solutions of the 
isentropic relativistic Euler–Poisson equations with a vacuum state in spherical 
symmetry. Using a general family of testing functions, we obtain new blowup 
conditions for the relativistic Euler–Poisson equations. We also show that the 
proposed blowup conditions are valid regardless of the speed requirement, which 
was one of the key constraints stated in Geng (2015) [1].
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1. Introduction

The isentropic relativistic Euler–Poisson equations [1] are expressed as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t(
n√

1 − |v|2/c2
) + ∇ · ( nv√

1 − |v|2/c2
) = 0,

∂t(
p/c2 + ρ

1 − |v|2/c2 v) + ∇ · ( p/c2 + ρ

1 − |v|2/c2 v ⊗ v) + ∇p = 4πn∇φ√
1 − |v|2/c2

,

Δφ = 4πn√
1 − |v|2/c2

,

(1)

where n is defined by

ρ = n
(
1 + e/c2

)
, (2)
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which satisfies

dn
nc2

= dρ
p + ρc2

. (3)

The unknowns and constants in the above equation are defined as follows: ρ : [0, ∞) × R3 → [0, ∞) and 
n : [0, ∞) × R3 → [0, ∞) denote the proper mass-energy density and the charge density, respectively; c is 
the speed of light; v : [0, ∞) × R3 → R3 is the velocity of an electro-fluid; −φ : [0, ∞) × R3 → R is the 
electrostatic potential in the inertial frame; and p = p(ρ) is the pressure function of the electro-fluid in a 
proper frame. The equation of state p follows the γ-law:

p = ργ , (4)

where γ > 1 is the adiabatic index, and the speed of sound is

√
p′(ρ) < c, (5)

where c is the speed of light which is the highest speed in the special relativity.
Lastly, the constant e ≥ 0 in (2) is the specific internal energy.
Relativistic electrodynamics includes the study of the interaction between relativistic charged particles 

and electromagnetic fields when the particles are moving at a speed comparable to the speed of light 
in a vacuum. At such a high speed, the motion of the charged particles no longer obeys the Newtonian 
equations, so relativistic equations of particles must be applied. Under a field with a much stronger electric 
than magnetic effect, such as those in supernova explosions, gravitational collapse, and the formation and 
expansion of black holes and neutron stars, the motion of an isentropic relativistic electro-fluid can be 
described by the Euler–Poisson equations (2) when the charged particles are moving very fast.

To understand the mathematical nature of relativistic fluid dynamics, we first review a related and 
previously developed relativistic model, namely, the relativistic Euler equations. Makino and Ukai [8,9] and 
LeFloch and Ukai [5] established the local existence of classical solutions to the relativistic system using 
the theory of a quasi-linear symmetric hyperbolic system. More precisely, the critical part of Makino and 
Ukai’s proof was based on the existence of a strictly convex entropy for the non-vacuum case; the critical 
part of LeFloch and Ukai’s proof relied on the generalized Riemann invariants and normalized velocity for 
the vacuum case. Geng and Li [2] extended these results to the isentropic system. For the non-isentropic 
system, Guo and Tahvildar-Zadeh [4] proved the blowup result for smooth solutions using the averaged 
quantities method developed by Sideris [13,14]. Moreover, Pan and Smoller [11] applied the classical energy 
method to show the singularity formation of smooth solutions.

Due to the complexity of the structures of system (1), research on multi-dimensional relativistic Euler–
Poisson equations is still at an early stage. In 2013, Mai, Li and Zhang [7] gave the first well-posed result for 
the steady-state relativistic Euler–Poisson equations with relaxation. For system (1) in the one dimensional 
case, Geng and Wang [3] obtained the global existence of a smooth solution with some monotonic condi-
tions on the initial data. The importance of system (1) is that the non-relativistic Euler–Poisson equations 
are the Newtonian limit of system (1). Readers may refer to [6,12,18,19,15] for the blowup results of the 
non-relativistic Euler–Poisson equations.

In this paper, we consider the spherical symmetric solutions, namely,

n = n(t, r), ρ = ρ(t, r), v = x

r
v(t, r), (6)

where r = |x| is the radius of the spatial variables x ∈ R3.
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