General monotonicity and interpolation of operators

Stepan M. Grigoriev ${ }^{\text {a }}$, Yoram Sagher ${ }^{\text {a,* }}$, Thomas R. Savage ${ }^{\text {b }}$
a Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
b 2801 NE 16th St, Fort Lauderdale, FL 33304, USA

A R T I C L E I N F O

Article history:

Received 6 February 2015
Available online 23 October 2015
Submitted by Richard M. Aron

Keywords:

General monotonicity
Fourier coefficients
$L(p, q)$ spaces
Interpolation of operators

Abstract

Using interpolation properties of cones of general monotone functions, we prove the equivalence of the $L(p, q)$ norms of such functions and their Fourier transforms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given a class X, we shall denote by X^{+}the family of positive elements in X.
Throughout the article we use the following weighted L^{q} and l^{q} quasi-norms:

Definition 1.1. Let f be a measurable function on $\mathbb{R}^{+}=(0, \infty)$ and let $\left\{a_{n}\right\}$ be a sequence of complex numbers. For $0<p \leq \infty$ and $0<q \leq \infty$ define:

$$
\begin{equation*}
\|f\|_{L_{w(p, q)}^{q}}=\left\|f(x) \cdot x^{\frac{1}{p}-\frac{1}{q}}\right\|_{L^{q}} ; \quad\left\|\left\{a_{n}\right\}\right\|_{l_{w(p, q)}^{q}}=\left\|\left\{a_{n} \cdot n^{\frac{1}{p}-\frac{1}{q}}\right\}\right\|_{l^{q}} \tag{1}
\end{equation*}
$$

To simplify the language, we will refer to the quantities (1) as norms.
$L_{w(p, q)}^{q}$ and $l_{w(p, q)}^{q}$ are the spaces of such functions and sequences for which the corresponding norms are finite.

For any measurable function f on an arbitrary measure space (Ω, Σ, μ), so that $\mu\{|f|>\gamma\}<\infty$ for all $\gamma>0$, we define its decreasing rearrangement, f^{*}, on $(0, \infty)$, so that $\lambda\left\{f^{*}>\gamma\right\}=\mu\{|f|>\gamma\}$ for all $\gamma>0$, where λ is Lebesgue measure on the line. We define similarly the rearrangement of a sequence $\left\{a_{n}\right\}$, and denote it by $\left\{a_{n}^{*}\right\}$.

[^0]Recall the definition of the Lorentz spaces:
Definition 1.2. Let f and $\left\{a_{n}\right\}$ be such that f^{*} and $\left\{a_{n}^{*}\right\}$ exist. For $0<p<\infty$ and $0<q \leq \infty$, or $p=q=\infty$, define

$$
\begin{equation*}
\|f\|_{L(p, q)}=\|f\|_{L(p, q)(\Omega, \Sigma, \mu)}=\left\|f^{*}\right\|_{L_{w(p, q)}^{q}} ;\left\|\left\{a_{k}\right\}\right\|_{l(p, q)}=\left\|\left\{a_{k}^{*}\right\}\right\|_{l_{w(p, q)}^{q}} \tag{2}
\end{equation*}
$$

$L(p, q)$ and $l(p, q)$ are the spaces of such functions and sequences for which the corresponding norms are finite. $L(p, q)$ and $l(p, q)$ are called Lorentz spaces.

For any pair of positive functions, Q_{1} and Q_{2}, let us write $Q_{1} \sim Q_{2}$ if there exists a constant $C>0$ so that $\frac{1}{C} Q_{1} \leq Q_{2} \leq C Q_{1}$.

Definition 1.3. Given a sequence $\left\{a_{n}\right\}$, the function $f(x)=a_{\lceil x\rceil}$ is called its associated function.
Lemma 1.4. Let f be the function associated with $\left\{a_{n}\right\}, 0<p<\infty, 0<q \leq \infty$, or $p=q=\infty$. Then

$$
\begin{equation*}
\|f\|_{L_{w(p, q)}^{q}} \sim\left\|\left\{a_{k}\right\}\right\|_{l_{w(p, q)}^{q}} . \tag{3}
\end{equation*}
$$

Also, f^{*} exists if and only if $\left\{a_{n}^{*}\right\}$ exists and if they do then

$$
\begin{equation*}
\|f\|_{L(p, q)} \sim\left\|\left\{a_{k}\right\}\right\|_{l(p, q)} \tag{4}
\end{equation*}
$$

Proof. For $q<\infty$:

$$
\begin{aligned}
\|f\|_{L_{w(p, q)}^{q}} & =\left(\sum_{k=1}^{\infty} \int_{k-1}^{k} x^{\frac{q}{p}-1}|f(x)|^{q} d x\right)^{\frac{1}{q}} \\
& =\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{q} \int_{k-1}^{k} x^{\frac{q}{p}-1} d x\right)^{\frac{1}{q}} \sim\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{q} k^{\frac{q}{p}-1}\right)^{\frac{1}{q}}=\left\|\left\{a_{k}\right\}\right\|_{l_{w(p, q)}^{q}} .
\end{aligned}
$$

For $q=\infty$:

$$
\sup _{k-1 \leq x<k} x^{\frac{1}{p}}|f(x)|=k^{\frac{1}{p}}\left|a_{k}\right| \Longrightarrow\|f\|_{L_{w(p, \infty)}^{\infty}}=\left\|\left\{a_{k}\right\}\right\|_{l_{w(p, \infty)}^{\infty}}
$$

proving (3). (4) is proved similarly.
G.H. Hardy and J.E. Littlewood showed that there is a norm equivalence between a function and the sequence of its Fourier coefficients provided that either the function or the sequence is nonnegative and decreasing:

Theorem 1.5. (See G.H. Hardy and J.E. Littlewood [7].) Assume that $\left\{c_{n}\right\} \searrow 0, f(x)=\sum_{n=0}^{\infty} c_{n} \cos n x$ or $f(x)=\sum_{n=1}^{\infty} c_{n} \sin n x$. Then for all $p \in(1, \infty)$,

$$
\|f\|_{L^{p}(0, \pi)} \sim\left\|\left\{c_{n}\right\}\right\|_{l\left(p^{\prime}, p\right)} .
$$

https://daneshyari.com/en/article/4614536

Download Persian Version:
https://daneshyari.com/article/4614536

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: sgrigori@fau.edu (S.M. Grigoriev), yoram.sagher@gmail.com (Y. Sagher), savage.t1989@gmail.com (T.R. Savage).

