Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

霐

Stepan M. Grigoriev^a, Yoram Sagher^{a,*}, Thomas R. Savage^b

^a Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
 ^b 2801 NE 16th St, Fort Lauderdale, FL 33304, USA

ARTICLE INFO

Article history: Received 6 February 2015 Available online 23 October 2015 Submitted by Richard M. Aron

Keywords: General monotonicity Fourier coefficients L(p,q) spaces Interpolation of operators

ABSTRACT

Using interpolation properties of cones of general monotone functions, we prove the equivalence of the L(p,q) norms of such functions and their Fourier transforms. © 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given a class X, we shall denote by X^+ the family of positive elements in X. Throughout the article we use the following weighted L^q and l^q quasi-norms:

Definition 1.1. Let f be a measurable function on $\mathbb{R}^+ = (0, \infty)$ and let $\{a_n\}$ be a sequence of complex numbers. For $0 and <math>0 < q \le \infty$ define:

$$\|f\|_{L^{q}_{w(p,q)}} = \left\|f(x) \cdot x^{\frac{1}{p} - \frac{1}{q}}\right\|_{L^{q}}; \quad \|\{a_{n}\}\|_{l^{q}_{w(p,q)}} = \left\|\left\{a_{n} \cdot n^{\frac{1}{p} - \frac{1}{q}}\right\}\right\|_{l^{q}}.$$
(1)

To simplify the language, we will refer to the quantities (1) as norms.

 $L^q_{w(p,q)}$ and $l^q_{w(p,q)}$ are the spaces of such functions and sequences for which the corresponding norms are finite.

For any measurable function f on an arbitrary measure space (Ω, Σ, μ) , so that $\mu \{|f| > \gamma\} < \infty$ for all $\gamma > 0$, we define its decreasing rearrangement, f^* , on $(0, \infty)$, so that $\lambda \{f^* > \gamma\} = \mu \{|f| > \gamma\}$ for all $\gamma > 0$, where λ is Lebesgue measure on the line. We define similarly the rearrangement of a sequence $\{a_n\}$, and denote it by $\{a_n^*\}$.

^{*} Corresponding author.

E-mail addresses: sgrigori@fau.edu (S.M. Grigoriev), yoram.sagher@gmail.com (Y. Sagher), savage.t1989@gmail.com (T.R. Savage).

Recall the definition of the Lorentz spaces:

Definition 1.2. Let f and $\{a_n\}$ be such that f^* and $\{a_n^*\}$ exist. For $0 and <math>0 < q \le \infty$, or $p = q = \infty$, define

$$\|f\|_{L(p,q)} = \|f\|_{L(p,q)(\Omega,\Sigma,\mu)} = \|f^*\|_{L^q_{w(p,q)}}; \ \|\{a_k\}\|_{l(p,q)} = \|\{a^*_k\}\|_{l^q_{w(p,q)}}.$$
(2)

L(p,q) and l(p,q) are the spaces of such functions and sequences for which the corresponding norms are finite. L(p,q) and l(p,q) are called Lorentz spaces.

For any pair of positive functions, Q_1 and Q_2 , let us write $Q_1 \sim Q_2$ if there exists a constant C > 0 so that $\frac{1}{C}Q_1 \leq Q_2 \leq CQ_1$.

Definition 1.3. Given a sequence $\{a_n\}$, the function $f(x) = a_{\lceil x \rceil}$ is called its associated function.

Lemma 1.4. Let f be the function associated with $\{a_n\}, 0 , or <math>p = q = \infty$. Then

$$\|f\|_{L^q_{w(p,q)}} \sim \|\{a_k\}\|_{l^q_{w(p,q)}}.$$
(3)

Also, f^* exists if and only if $\{a_n^*\}$ exists and if they do then

$$\|f\|_{L(p,q)} \sim \|\{a_k\}\|_{l(p,q)}.$$
(4)

Proof. For $q < \infty$:

$$\begin{split} \|f\|_{L^q_{w(p,q)}} &= \left(\sum_{k=1}^{\infty} \int_{k-1}^k x^{\frac{q}{p}-1} |f(x)|^q dx\right)^{\frac{1}{q}} \\ &= \left(\sum_{k=1}^{\infty} |a_k|^q \int_{k-1}^k x^{\frac{q}{p}-1} dx\right)^{\frac{1}{q}} \sim \left(\sum_{k=1}^{\infty} |a_k|^q k^{\frac{q}{p}-1}\right)^{\frac{1}{q}} = \|\{a_k\}\|_{l^q_{w(p,q)}}. \end{split}$$

For $q = \infty$:

$$\sup_{k-1 \le x < k} x^{\frac{1}{p}} |f(x)| = k^{\frac{1}{p}} |a_k| \Longrightarrow \|f\|_{L^{\infty}_{w(p,\infty)}} = \|\{a_k\}\|_{l^{\infty}_{w(p,\infty)}}$$

proving (3). (4) is proved similarly. \Box

G.H. Hardy and J.E. Littlewood showed that there is a norm equivalence between a function and the sequence of its Fourier coefficients provided that either the function or the sequence is nonnegative and decreasing:

Theorem 1.5. (See G.H. Hardy and J.E. Littlewood [7].) Assume that $\{c_n\} \searrow 0$, $f(x) = \sum_{n=0}^{\infty} c_n \cos nx$ or $f(x) = \sum_{n=1}^{\infty} c_n \sin nx$. Then for all $p \in (1, \infty)$,

$$||f||_{L^p(0,\pi)} \sim ||\{c_n\}||_{l(p',p)}$$

Download English Version:

https://daneshyari.com/en/article/4614536

Download Persian Version:

https://daneshyari.com/article/4614536

Daneshyari.com