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We deal with composition operators induced by injective homomorphisms on infinite 
weighted graphs from a viewpoint of reproducing kernel Hilbert space theory. The 
representation formula for their adjoint operators is given in the terms of the frames 
constructed from reproducing kernels, and de Branges–Rovnyak spaces induced by 
composition operators are studied.
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1. Introduction

Let G be a graph with at most countably many vertices. The vertex set of G will be denoted by V = V (G)
and the edge set by E = E(G). Let deg(x) denote the number of edges connected at a vertex x. We assume 
that deg(x) is finite for each x in V , and these graphs are said to be locally finite. Further, all graphs 
appearing in this paper are assumed to be non-directed, have no loops, have a vertex called the origin 
denoted as 0G, and are connected, that is, there exists a finite path from x to y for any x and y in V . Let 
Wx,y denote a real-valued function on V × V such that

Wx,y > 0 ({x, y} ∈ E), Wx,y = 0 ({x, y} /∈ E) and Wx,y = Wy,x.

Then graph G equipped with Wx,y is called a weighted graph or a network.

Definition 1.1. Let G1 = (V1, E1, W (G1)) and G2 = (V2, E2, W (G2)) be weighted graphs. A mapping ϕ from 
V1 to V2 is called a homomorphism from G1 to G2 if

W (G1)
x,y ≤ W

(G2)
ϕ(x),ϕ(y) (x, y ∈ V1).
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In this paper, this inequality will be abbreviated as Wx,y ≤ Wϕ(x),ϕ(y) if no confusion occurs. Further, if 
homomorphism ϕ is a bijective mapping from V1 to V2 satisfying

W (G1)
x,y = W

(G2)
ϕ(x),ϕ(y) (x, y ∈ V1)

then ϕ will be called an isomorphism from G1 to G2.

Throughout this paper, we will deal only with injective homomorphisms which preserve origins, that is, 
we assume the following two conditions:

(i) ϕ(x) �= ϕ(y) if x �= y,
(ii) ϕ(0G1) = 0G2 .

The purpose of this paper is to study the composition operators induced by injective homomorphisms 
using reproducing kernel Hilbert space methods. This paper is organized as follows. In Section 2, we show 
how one can construct from a weighted graph a reproducing kernel Hilbert space of real-valued functions 
with a natural frame (in the sense of wavelet theory). In Section 3, basic properties of composition oper-
ators induced by injective homomorphisms are shown. In particular, the representation formula for their 
adjoint operators is given in the terms of the frames constructed from reproducing kernels. As suggested 
in [5], de Branges–Rovnyak space theory would be a suitable framework for dealing with injective homo-
morphisms on graphs in functional analysis. In Section 4, de Branges–Rovnyak spaces induced by injective 
homomorphisms on infinite weighted graphs are studied.

2. Hilbert space HG

E(·,·) will denote the weighted discrete Dirichlet form on V × V defined as follows:

E(u, v) = 1
2

∑
x,y∈V

Wx,y(u(x) − u(y))(v(x) − v(y)),

where u and v are real-valued functions on V . It is easy to see that E(u, u) = 0 if and only if u is constant, 
because G is connected.

Definition 2.1. Let HG denote the real Hilbert space consisting of real-valued functions on V such that 
u(0G) = 0 and E(u, u) is finite, that is, we set

HG = {u : E(u, u) < +∞ and u(0G) = 0} and ‖u‖2
HG

= E(u, u).

Let δx denote the delta function at x, and we set Wx =
∑

{x,y}∈E Wx,y. It is readily seen that

E(δx, δy) =
{
Wx (x = y)
−Wx,y (x �= y),

(x, y ∈ V ),

and thus the set {δx : x ∈ V \ {0G}} is contained in HG.

Theorem 2.1. For any x in V , there exists a unique function kx in HG such that 〈u, kx〉HG
= u(x) for any 

u in HG, that is, HG is a reproducing kernel Hilbert space.

Proof. Although this fact is well known, we give a proof for the sake of readers. We fix an arbitrary vertex x. 
Then there exists a finite path P = {x0, x1, . . . , xn} from x0 = 0G to xn = x in G by the assumption that 
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