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We investigate the existence and uniqueness of (locally) absolutely continuous tra-
jectories of a penalty term-based dynamical system associated to a constrained 
variational inequality expressed as a monotone inclusion problem. Relying on Lya-
punov analysis and on the ergodic continuous version of the celebrated Opial Lemma 
we prove weak ergodic convergence of the orbits to a solution of the constrained 
variational inequality under investigation. If one of the operators involved satisfies 
stronger monotonicity properties, then strong convergence of the trajectories can be 
shown.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

This paper is motivated by the increasing interest in solving constrained variational inequalities expressed 
as monotone inclusion problems of the form

0 ∈ Ax + NC(x), (1)

where H is a real Hilbert space, A : H ⇒ H is a maximally monotone operator, C = argmin Ψ is the set of 
global minima of the proper, convex and lower semicontinuous function Ψ : H → R := R ∪ {±∞} fulfilling 
min Ψ = 0 and NC : H ⇒ H is the normal cone of the set C ⊆ H (see [4–6,8,17,18,26,27]). One can find in 
the literature iterative schemes based on the forward–backward paradigm for solving (1) (see [5,6,26,27]), 
that perform in each iteration a proximal step with respect to A and a subgradient step with respect to the 
penalization function Ψ.

Recently, even more complex structures have been analyzed, like monotone inclusion problems of the 
form
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0 ∈ Ax + Dx + NC(x), (2)

where A : H ⇒ H is a maximally monotone operator, D : H → H is a (single-valued) cocoercive operator 
and C ⊆ H is the (nonempty) set of zeros of another cocoercive operator B : H → H, see [8,17,18].

In this paper we are concerned with addressing monotone inclusion problem (2) from the perspective 
of dynamical systems. More precisely, we associate to this constrained variational inequality a first-order 
dynamical system formulated in terms of the resolvent of the maximal monotone operator A, which has 
as discrete counterparts penalty-type numerical schemes already considered in the literature in the context 
of solving (2). Let us mention that dynamical systems of similar implicit type have been investigated in 
[1,3,9,12,19–21].

In the first part of the manuscript we study the existence and uniqueness of (locally) absolutely continuous 
trajectories generated by the dynamical system, by appealing to arguments based on the Cauchy–Lipschitz–
Picard Theorem (see [25,29]). In the second part of the paper we investigate the convergence of the 
trajectories to a solution of the constrained variational inequality (2). We use as tools Lyapunov analysis 
combined with the continuous version of the Opial Lemma. Under the fulfillment of a condition expressed in 
terms of the Fitzpatrick function of the cocoercive operator B we are able to show ergodic weak convergence 
of the orbits. Moreover, if the operator A is strongly monotone, we can prove even strong (non-ergodic) 
convergence for the generated trajectories.

For the reader’s convenience we present in the following some notations which are used throughout the 
paper (see [10,14,28]).

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖ =
√
〈·, ·〉. The normal 

cone of S ⊆ H is defined by NS(x) = {u ∈ H : 〈y − x, u〉 ≤ 0 ∀y ∈ S}, if x ∈ S and NS(x) = ∅ for x /∈ S. 
Notice that for x ∈ S, u ∈ NS(x) if and only if σS(u) = 〈x, u〉, where σS is the support function of S, 
defined by σS(u) = supy∈S〈y, u〉.

For an arbitrary set-valued operator M : H ⇒ H we denote by GrM = {(x, u) ∈ H ×H : u ∈ Mx} its 
graph, by domM = {x ∈ H : Mx 
= ∅} its domain, by ranM = {u ∈ H : ∃x ∈ H s.t. u ∈ Mx} its range
and M−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ GrM−1 if and only if (x, u) ∈ GrM . We use 
also the notation zerM = {x ∈ H : 0 ∈ Mx} for the set of zeros of the operator M . We say that M is 
monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrM . A monotone operator M is said to be maximally 
monotone, if there exists no proper monotone extension of the graph of M on H×H. Let us mention that 
in case M is maximally monotone, zerM is a convex and closed set [10, Proposition 23.39]. We refer to 
[10, Section 23.4] for conditions ensuring that zerM is nonempty. If M is maximally monotone, then one 
has the following characterization for the set of its zeros:

z ∈ zerM if and only if 〈u− z, w〉 ≥ 0 for all (u,w) ∈ GrM. (3)

The operator M is said to be γ-strongly monotone with γ > 0, if 〈x − y, u − v〉 ≥ γ‖x − y‖2 for all 
(x, u), (y, v) ∈ GrM . Notice that if M is maximally monotone and strongly monotone, then zerM is a 
singleton, thus nonempty (see [10, Corollary 23.37]).

The resolvent of M , JM : H ⇒ H, is defined by JM = (Id+M)−1, where Id : H → H, Id(x) = x for 
all x ∈ H, is the identity operator on H. Moreover, if M is maximally monotone, then JM : H → H is 
single-valued and maximally monotone (cf. [10, Proposition 23.7 and Corollary 23.10]). We will also use the 
Yosida approximation of the operator M , which is defined by Mα = 1

α (Id−JαM ), for α > 0.
The Fitzpatrick function associated to a monotone operator M , defined as

ϕM : H×H → R, ϕM (x, u) = sup
(y,v)∈Gr M

{〈x, v〉 + 〈y, u〉 − 〈y, v〉},

is a convex and lower semicontinuous function and it will play an important role throughout the paper. 
Introduced by Fitzpatrick in [24], this notion opened the gate towards the employment of convex analysis 
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