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We are interested in monotonicity and symmetry properties for nonnegative 
solutions of elliptic equations defined in geodesic balls of the hyperbolic space Hn, 
which is the simplest example of manifold with negative curvature. More precisely, 
let B be a geodesic ball in Hn and let u ∈ W 1,p(B) ∩L∞(B) be a sufficiently regular 
solution of Δpu + f(u) = 0 in B with boundary condition u = 0, where Δp is the 
p-Laplace–Beltrami operator with p > 2. Then we prove local or global symmetry 
results for nonnegative solutions according to the assumptions about the zeros of 
the nonlinearity f(s), which is merely continuous.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The main purpose of this paper is to apply a variant of the method of moving planes and local inversion 
method to prove monotonicity and local or global symmetry results for nonnegative solutions for a class of 
quasilinear elliptic equations defined in geodesic balls of the hyperbolic space Hn, and when the nonliearity 
is merely continuous.

1.1. Motivation and previous results

In order to motivate our results we begin by giving a brief survey on this subject. The study of symmetry 
properties for solutions of differential equations was started by J. Serrin [30] in 1971 by using the method of 
moving planes (MMP), also known as Alexandrov reflection method, created by the Soviet mathematician 
A.D. Alexandrov in the early 1950s to study manifolds with constant mean curvature (see [1,2]). Later, in 
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celebrated papers [22,23], by using the MMP, B. Gidas, M. Ni and L. Nirenberg proved that any positive 
solution u ∈ C2(Ω) of the problem −Δu = f(u) in Ω with u = 0 on ∂Ω is radially symmetric when f(s) is 
C1 and Ω = B ⊂ R

n is a ball or Ω = R
n (assuming that u(x) = O(|x|2−n) at infinity). After that, by using 

method of moving planes in combination with maximum principle for narrow domains, H. Berestycki and 
L. Nirenberg [5] improved the results in [22,23]. Explicitly, they proved monotonicity and symmetry in the 
x1 direction for positive solutions u ∈ W 2,n

loc (Ω) ∩ C(Ω) of nonlinear elliptic equations in a general bounded 
domain in Ω ⊂ R

n which is convex in the x1 direction by assuming that f(s) is only Lipschitz continuous.
The method of moving planes and its variants have been applied to extend and improve the results cited 

above in some directions. First, it has been used to obtain symmetry properties for nonnegative solutions 
of semilinear elliptic equations involving continuous nonlinearities, not necessarily locally Lipschitz defined 
in bounded or unbounded domains of Rn (see for example [8–10,18–20] and references therein).

In another direction MMP has been used to study symmetry properties for positive solutions of 
p-Laplacian equations of the form {

−Δpu = f(u) in Ω
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
n. It should be mentioned that the ideas used to study the Laplacian case cannot be applied 

directly to analyze symmetry for solutions of (1.1) because the p-Laplacian is a singular or degenerate elliptic 
operator if 1 < p < 2 or p > 2, respectively, on the critical set

Z := {x ∈ Ω : ∇u(x) = 0},

and in general C1,α is the optimal regularity result that we have for solutions of (1.1) as E. DiBenedetto, 
P. Tolksdorf have established in [17,31]. In this direction M. Badiale and E. Nabana [4] proved that positive 
solutions u of (1.1) are radially symmetric by assuming that f(s) is a C1-function, f ′(0) > 0, Ω = B ⊂ R

n

is a ball or Ω = R
n (assuming that u(x) → 0 at infinity) and under the additional assumption that the 

origin is the unique critical point of u, that is, Z = {0}. They applied the MMP directly because under 
these assumptions u belongs to class C2 in B \ {0} and satisfies a second order uniformly elliptic equation. 
Later, this result was improved for the case 1 < p < 2 in [11–13,15,16] without assuming the condition 
Z = {0}. For that it was crucial in their arguments a comparison principle due to L. Damascelli in [11]. For 
p > 2, by using a weighted Sobolev space with the weight ρ = |Du|p−2 and the method of moving planes 
in combination with comparison principles, L. Damascelli and B. Sciunzi [14,15] proved monotonicity and 
symmetry properties for positive solutions u ∈ C1(Ω) of problem (1.1), when Ω ⊂ R

n is a symmetric 
bounded smooth domain and f(s) is a positive and locally Lipschitz continuous function. In [29] B. Sciunzi 
extended the results in [15] to the case when f(s) is allowed to change sign, but is nondecreasing near its 
zeros. We emphasize that case p > 2 is more involved. For instance, M. Grossi et al. [24] and F. Brock [7]
gave examples of nonsymmetric solutions of the problem (1.1) for C2 nonlinearities which change sign. Using 
new rearrangement techniques, called continuous Steiner symmetrization, F. Brock [6,7] proved symmetry 
results for nonnegative solutions of the problem (1.1) in the case 1 < p ≤ 2. He introduced a notion of 
local symmetry and proved that in case p > 2 any solution for (1.1) is locally radially symmetric if f(s)
is nondecreasing. The variant of the method of moving planes together with local inversion methods was
used by J. Dolbeault, P. Felmer and R. Monneau [21] to obtain local symmetry results if f(s) is merely 
continuous, has a finite number of zeros and is nonincreasing or nonnegative near its zeros. Moreover, they 
obtained global symmetry results if f(s) is just continuous and positive.

Symmetry results for elliptic problems defined on Riemannian manifolds with constant sectional curvature 
were also considered recently by S. Kumaresan and J. Prajapat. More precisely, in [25] and [26] they have 
obtained analogous results to those of [22] and [30] for symmetric domains of the hyperbolic space Hn or the 
Sphere Sn, respectively. To prove those results they have introduced an intrinsic geometric interpretation 
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