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The aim of this paper is to derive the self-improving property of integrability for 
the spatial gradient of solutions to degenerate parabolic obstacle problem with 
irregular obstacles and p(x, t)-nonstandard growth. More precisely, we prove that 
the spatial gradient of the solution is integrable to a larger power than the natural 
one determined by the structural assumptions on the involved differential operator.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we establish higher integrability properties of solutions to degenerate parabolic obstacle 
problems with p(x, t)-nonstandard growth, i.e. solutions to parabolic variational inequality satisfying an 
obstacle constraint. In general, the idea of the self-improving property of integrability is the following: 
In principle the proof is based on certain reverse Hölder inequalities and an application of the Gehring’s 
Lemma. To conclude a reverse Hölder inequality, we need a Caccioppoli estimate. Note that a Caccioppoli 
estimate has the structure of a reverse Poincaré inequality. Such a Caccioppoli estimate follows by consid-
ering the weak formulation of the elliptic or parabolic equation resp. system, then applying the structure 
condition on the vector-field and an application of Sobolev–Poincaré inequality. This yields the desired 
Caccioppoli estimate and therefore, the reverse Hölder inequality. In the nonstandard case, it is necessary 
to use additionally a localization argument, which allows to homogenize the estimates, to derive a reverse 
Hölder type inequality. This estimate is comparable to the one from the standard case and the key to the 
higher integrability.

Historical background. In the elliptic case with standard p-growth, it is by now a classical fact that weak 
solutions are locally higher integrable in the sense of Meyer’s higher integrability result for the spatial 
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gradient. This was first proved for the Jacobian of quasiconformal mapping by Gehring [28] and later on, 
for solutions to elliptic systems by Elcrat and Meyers [21], see also the monograph [29]. The result of higher 
integrability is already stated for parabolic systems with standard p-growth by Kinnunen and Lewis [35]. 
In the stationary nonstandard case, there are results of higher integrability by Zhikov in [43], while in 
the nonstandard p(z)-growth case there is the higher integrability result for the homogeneous parabolic 
p(z)-Laplacian, i.e.

∂tu− div(|Du|p(z)−2Du) = 0 in ΩT

by Antontsev and Zhikov in [6]. Moreover, there is the p(z)-analogue to [35] on the one hand by Bögelein and 
Duzaar [11] and on the other hand by Zhikov and Pastukhova in [44]. Zhikov and Pastukhova established 
independently and slightly earlier a higher integrability result, which is very similar to the one of Bögelein 
and Duzaar in [11]. Bögelein and Duzaar have shown a Meyer’s type higher integrability result for the 
spatial gradient of weak solutions to parabolic systems of the form

∂tu− diva(z,Du) = div(|F |p(z)−2F ) in ΩT . (1.1)

Their result ensures that weak solutions of the preceding equation belong to a slightly higher Sobolev 
space than the natural space uniquely by the growth of the vector-field a(z, ·) and therefore, obey a certain 
self-improving property of integrability. This result we may also extend to solutions to parabolic equations 
of the from:

∂tu− diva(z,Du) = f − div(|F |p(z)−2F ) in ΩT . (1.2)

Finally, we would like to mention that the higher integrability of solution to obstacle problems with p-growth, 
is a result by Bögelein and Scheven [12].

Motivation of parabolic problems with variable exponents and obstacles. Obstacle problems are interesting 
objects in the theory of partial differential equations and the calculus of variations. In general, the theory 
of obstacle problems is motivated by numerous applications, e.g. in mechanics or in control theory. We 
refer to [10,34] for an overview of the classical theory and applications. Moreover, obstacle problems have 
been exploited in nonlinear potential theory for approximating supersolutions by solutions to obstacle 
problems, see [31,33,36]. Up to now, the theory for elliptic problems is well understood, as well the theory 
for elliptic obstacle problems and also the nonstandard case. Therefore, parabolic problems arouse interest 
more and more in mathematics during the last years. Also parabolic problems are motivated by physical 
aspects. In particular, evolutionary equations and systems can be used to model physical processes, e.g. 
heat conduction or diffusion processes. There are many open problems, e.g. the Navier–Stokes equation, the 
basic equation of fluid mechanics. Furthermore, some properties of solutions of the system of a modified 
Navier–Stokes equation, describing electro-rheological fluids are studied in [3]. Such fluids are recently of 
high technological interest, because of their ability to change the mechanical properties under the influence 
of exterior electro-magnetic field, see [27,38]. For example, many electro-rheological fluids are suspensions 
consisting of solid particles and a carrier oil. These suspensions change their material properties dramatically 
if they are exposed to an electric field, see [39]. Most of the known results concern the stationary models, 
see for example [1,2]. Other applications are the models for flows in porous media [5,32].

Turning towards obstacle problems, one observes that the stationary case with standard growth is well 
developed, also the nonstandard case. Furthermore, in the last four or five years, a gap in the parabolic 
theory of obstacle problems with standard p-growth was closed, see [8,12,13,16–18,24,41]. Moreover, in the 
last two or three years there were several regularity results for the nonstandard growth case developed, see 
[7,9,19,22,23,25,42].
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