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The problem of existence and uniqueness of absolutely continuous invariant 
measures for a class of piecewise deterministic Markov processes is investigated 
using the theory of substochastic semigroups obtained through the Kato–Voigt 
perturbation theorem on the L1-space. We provide a new criterion for the existence 
of a strictly positive and unique invariant density for such processes. The long 
time qualitative behavior of the corresponding semigroups is also considered. To 
illustrate our general results we give a detailed study of a two dimensional model 
of gene expression with bursting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study a class of piecewise-deterministic Markov processes (PDMPs) which we call semiflows with 
jumps. As defined in [10,11] a PDMP without active boundaries is determined by three local characteristics 
(π, ϕ, P), where π is a semiflow describing the deterministic parts of the process, ϕ(x) is the intensity of a 
jump from x, and P(x, ·) is the distribution of the state reached by that jump. The problem of existence of 
invariant measures for Markov processes is of fundamental importance in many applications of stochastic 
processes [11,18,24].

We consider semiflows that arise as solutions of ordinary differential equations

x′(t) = g(x(t)), (1.1)

where g: Rd → R
d is a (locally) Lipschitz continuous mapping. We assume that E is a Borel subset of Rd

such that for each x0 ∈ E the solution x(t) of (1.1) with initial condition x(0) = x0 exists and that x(t) ∈ E

for all t ≥ 0. We denote this solution by πtx0. Then the mapping (t, x0) �→ πtx0 is Borel measurable 
and satisfies π0x = x, πt+sx = πt(πsx) for x ∈ E, s, t ∈ R+. As concerns jumps we consider a family of 
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measurable transformations Tθ: E → E, θ ∈ Θ, where Θ is a metric space which carries a Borel measure ν, 
and a family of measurable functions pθ: E → [0, ∞), θ ∈ Θ, satisfying∫

Θ

pθ(x)ν(dθ) = 1, x ∈ E,

so that the stochastic kernel P is of the form

P(x,B) =
∫
Θ

1B(Tθ(x))pθ(x)ν(dθ), x ∈ E, (1.2)

for B ∈ B(E), where B(E) is the Borel σ-algebra of subsets of E. This roughly means that if the value of 
the process is x then we jump to the point Tθ(x) with probability pθ(x).

The following standing assumptions will be made. The intensity function ϕ is continuous and

lim
t→∞

t∫
0

ϕ(πsx)ds = +∞ for all x ∈ E. (1.3)

The mappings (θ, x) �→ Tθ(x) and (θ, x) �→ pθ(x) are measurable so that the stochastic kernel in (1.2) is well 
defined. We assume also that each mapping πt: E → E as well as each Tθ: E → E is nonsingular with respect 
to a reference measure m on E. Recall that a measurable transformation T : E → E is called nonsingular
with respect to m if the measure m ◦ T−1 is absolutely continuous with respect to m, i.e., m(T−1(B)) = 0
whenever m(B) = 0.

Let us briefly describe the construction of the PDMP {X(t)}t≥0 with characteristics (π, ϕ, P) (see e.g. [10,
11] for details). Define the function

Fx(t) = 1 − exp{−
t∫

0

ϕ(πsx)ds}, t ≥ 0, x ∈ E, (1.4)

and note that the assumptions imposed on ϕ imply that Fx is a distribution function of a positive and finite 
random variable for every x ∈ E. Let t0 = 0 and let X(0) = X0 be an E-valued random variable. For each 
n ≥ 1 we can choose the nth jump time tn as a positive random variable satisfying

Pr(tn − tn−1 ≤ t|Xn−1 = x) = Fx(t), t ≥ 0,

and we define

X(t) =
{
πt−tn−1(Xn−1) for tn−1 ≤ t < tn,

Xn for t = tn,

where the nth post-jump position Xn is an E-valued random variable such that

Pr(Xn ∈ B|X(tn−) = x) = P(x,B),

and X(tn−) = limt↑tn X(t) = πtn−tn−1(Xn−1). In this way, the trajectory of the process is defined for 
all t < t∞ := limn→∞ tn and t∞ is called the explosion time. To define the process for all times, we set 
X(t) = Δ for t ≥ t∞, where Δ /∈ E is some extra state representing a cemetery point for the process. The 
PDMP {X(t)}t≥0 is called the minimal PDMP corresponding to (π, ϕ, P). It is said to be non-explosive if 
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