Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Existence of invariant densities for semiflows with jumps $\stackrel{\diamond}{\approx}$

Weronika Biedrzycka*, Marta Tyran-Kamińska

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

A R T I C L E I N F O

Article history: Received 16 March 2015 Available online 21 October 2015 Submitted by U. Stadtmueller

Keywords: Piecewise deterministic Markov process Stochastic semigroup Invariant density Dynamical systems with switching Gene expression models

ABSTRACT

The problem of existence and uniqueness of absolutely continuous invariant measures for a class of piecewise deterministic Markov processes is investigated using the theory of substochastic semigroups obtained through the Kato–Voigt perturbation theorem on the L^1 -space. We provide a new criterion for the existence of a strictly positive and unique invariant density for such processes. The long time qualitative behavior of the corresponding semigroups is also considered. To illustrate our general results we give a detailed study of a two dimensional model of gene expression with bursting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study a class of piecewise-deterministic Markov processes (PDMPs) which we call semiflows with jumps. As defined in [10,11] a PDMP without active boundaries is determined by three local characteristics $(\pi, \varphi, \mathcal{P})$, where π is a semiflow describing the deterministic parts of the process, $\varphi(x)$ is the intensity of a jump from x, and $\mathcal{P}(x, \cdot)$ is the distribution of the state reached by that jump. The problem of existence of invariant measures for Markov processes is of fundamental importance in many applications of stochastic processes [11,18,24].

We consider semiflows that arise as solutions of ordinary differential equations

$$x'(t) = g(x(t)), (1.1)$$

where $g: \mathbb{R}^d \to \mathbb{R}^d$ is a (locally) Lipschitz continuous mapping. We assume that E is a Borel subset of \mathbb{R}^d such that for each $x_0 \in E$ the solution x(t) of (1.1) with initial condition $x(0) = x_0$ exists and that $x(t) \in E$ for all $t \ge 0$. We denote this solution by $\pi_t x_0$. Then the mapping $(t, x_0) \mapsto \pi_t x_0$ is Borel measurable and satisfies $\pi_0 x = x$, $\pi_{t+s} x = \pi_t(\pi_s x)$ for $x \in E$, $s, t \in \mathbb{R}_+$. As concerns jumps we consider a family of

* Corresponding author.

 $^{^{*}\,}$ This research was supported by the Polish NCN grant No. 2014/13/B/ST1/00224.

E-mail addresses: wsiwek@us.edu.pl (W. Biedrzycka), mtyran@us.edu.pl (M. Tyran-Kamińska).

measurable transformations $T_{\theta}: E \to E, \theta \in \Theta$, where Θ is a metric space which carries a Borel measure ν , and a family of measurable functions $p_{\theta}: E \to [0, \infty), \theta \in \Theta$, satisfying

$$\int_{\Theta} p_{\theta}(x)\nu(d\theta) = 1, \quad x \in E,$$

so that the stochastic kernel \mathcal{P} is of the form

$$\mathcal{P}(x,B) = \int_{\Theta} 1_B(T_\theta(x))p_\theta(x)\nu(d\theta), \quad x \in E,$$
(1.2)

for $B \in \mathcal{B}(E)$, where $\mathcal{B}(E)$ is the Borel σ -algebra of subsets of E. This roughly means that if the value of the process is x then we jump to the point $T_{\theta}(x)$ with probability $p_{\theta}(x)$.

The following standing assumptions will be made. The intensity function φ is continuous and

$$\lim_{t \to \infty} \int_{0}^{t} \varphi(\pi_s x) ds = +\infty \quad \text{for all } x \in E.$$
(1.3)

The mappings $(\theta, x) \mapsto T_{\theta}(x)$ and $(\theta, x) \mapsto p_{\theta}(x)$ are measurable so that the stochastic kernel in (1.2) is well defined. We assume also that each mapping $\pi_t : E \to E$ as well as each $T_{\theta} : E \to E$ is nonsingular with respect to a reference measure m on E. Recall that a measurable transformation $T : E \to E$ is called *nonsingular* with respect to m if the measure $m \circ T^{-1}$ is absolutely continuous with respect to m, i.e., $m(T^{-1}(B)) = 0$ whenever m(B) = 0.

Let us briefly describe the construction of the PDMP $\{X(t)\}_{t\geq 0}$ with characteristics $(\pi, \varphi, \mathcal{P})$ (see e.g. [10, 11] for details). Define the function

$$F_x(t) = 1 - \exp\{-\int_0^t \varphi(\pi_s x) ds\}, \quad t \ge 0, \ x \in E,$$
(1.4)

and note that the assumptions imposed on φ imply that F_x is a distribution function of a positive and finite random variable for every $x \in E$. Let $t_0 = 0$ and let $X(0) = X_0$ be an *E*-valued random variable. For each $n \geq 1$ we can choose the *n*th jump time t_n as a positive random variable satisfying

$$\Pr(t_n - t_{n-1} \le t | X_{n-1} = x) = F_x(t), \quad t \ge 0,$$

and we define

$$X(t) = \begin{cases} \pi_{t-t_{n-1}}(X_{n-1}) & \text{for } t_{n-1} \le t < t_n, \\ X_n & \text{for } t = t_n, \end{cases}$$

where the *n*th post-jump position X_n is an *E*-valued random variable such that

$$\Pr(X_n \in B | X(t_n -) = x) = \mathcal{P}(x, B),$$

and $X(t_n-) = \lim_{t\uparrow t_n} X(t) = \pi_{t_n-t_{n-1}}(X_{n-1})$. In this way, the trajectory of the process is defined for all $t < t_{\infty} := \lim_{n\to\infty} t_n$ and t_{∞} is called the explosion time. To define the process for all times, we set $X(t) = \Delta$ for $t \ge t_{\infty}$, where $\Delta \notin E$ is some extra state representing a cemetery point for the process. The PDMP $\{X(t)\}_{t\geq 0}$ is called the *minimal* PDMP corresponding to $(\pi, \varphi, \mathcal{P})$. It is said to be *non-explosive* if Download English Version:

https://daneshyari.com/en/article/4614577

Download Persian Version:

https://daneshyari.com/article/4614577

Daneshyari.com