

Abstract Cauchy problem for weakly continuous operators

Toshitaka Matsumoto *, Naoki Tanaka
Department of Mathematics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan

A R T I C L E I N F O

Article history:

Received 12 June 2015
Available online 19 October 2015
Submitted by P.G. Lemarie-Rieusset

Keywords:

Abstract Cauchy problem
Weakly continuous operator
Growth condition
Comparison function
Maximal solution

Abstract

We discuss the solvability of the abstract Cauchy problem $u^{\prime}(t)=A u(t)$ for $t>0$ and $u(0)=u_{0} \in D$, where D is a weakly closed subset of a Banach space Y continuously embedded in the underlying Banach space X and A is a nonlinear operator from D into X satisfying a local weak continuity condition described by a family of functionals. We introduce a new type of weak compactness on the level sets of functionals and give a necessary and sufficient condition for the existence of a weakly continuously differentiable solution satisfying a growth condition. We apply the abstract result obtained to the Cauchy problem for a nonlinear Schrödinger equation and a mixed problem for a logarithmic wave equation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the solvability of the abstract Cauchy problem

$$
u^{\prime}(t)=A u(t) \text { for } t>0 \quad \text { and } \quad u(0)=u_{0} \in D
$$

where D is a weakly closed subset of a Banach space Y continuously embedded in the underlying Banach space X and A is a nonlinear operator from D into X satisfying a weak continuity condition. We are interested in finding a necessary and sufficient condition for the existence of a weakly continuously differentiable solution satisfying a growth condition.

In the special case where Y is a Hilbert space and A is a weakly sequentially continuous mapping on Y to X such that $\langle v, A v\rangle_{V, X} \leq \beta\left(\|v\|_{Y}^{2}\right)$ for $v \in V$, where $\beta \in C([0, \infty) ;[0, \infty))$ and V is another Banach space continuously embedded in Y such that $\langle v, u\rangle_{V, X}=(v, u)_{Y}$ for $v \in V$ and $u \in Y$, Kato and Lai [9] established the existence of a weakly continuously differentiable solution u satisfying the growth condition that $\|u(t)\|_{Y}^{2} \leq \rho(t)$, where ρ is the maximal solution of the ordinary differential equation $r^{\prime}(t)=\beta(r(t))$ for $t \geq 0$, and applied their abstract result to the Euler equation. Their abstract result is based on the following

[^0]two key formulations, and it has significant applications to fluid dynamics ([15,16], see also [5]), and to the KdV equation (see [14]).
(i) A functional φ defined only by the original norm of Y is used to specify the growth of solutions.
(ii) The level sets of φ are weakly compact in Y.

Their result was extended by Günther and Prokert [6] in such a way that a family $\left\{\langle\cdot, \cdot\rangle_{w} ; w \in W\right\}$ of bilinear forms was introduced by using an open set W in Y and the functional $\varphi(u)=(u, u)_{u}^{1 / 2}$ for $u \in W$ was used for the same purpose, where $\left\{(\cdot, \cdot)_{w} ; w \in W\right\}$ is a family of inner products of Y compatible with the family of bilinear forms.

For wider applications, it is necessary to extend their results for the following reasons. For an application to a logarithmic wave equation, another type of functional was used by Han [7] to estimate the growth of solutions. To study the nonlinear Schrödinger equation

$$
i u_{t}+\Delta u+|u|^{q-1} u=0
$$

two functionals $\varphi_{1}(v)=\|v\|_{L^{2}}^{2}$ for $v \in L^{2}\left(\mathbb{R}^{N}\right)$ and $\varphi_{2}(v)=\frac{1}{2}\|\nabla v\|_{L^{2}}^{2}-\frac{1}{q+1}\|v\|_{L^{q+1}}^{q+1}$ for $v \in H^{1}\left(\mathbb{R}^{N}\right)$ were used by Ginibre and Velo [4] under the situation that the topology of $L^{2}\left(\mathbb{R}^{N}\right)$ is stronger than that of $L^{q+1}\left(\mathbb{R}^{N}\right)$ on any bounded subset of $H^{1}\left(\mathbb{R}^{N}\right)$. In this case, the set $\left\{v ; \varphi_{j}(v) \leq \alpha_{j}\right.$ for $\left.j=1,2\right\}$ is not weakly closed in $H^{1}\left(\mathbb{R}^{N}\right)$, and so condition (ii) is not satisfied. It should be noted that the solution u of this equation satisfies the conservation law of the charge $\varphi_{1}(u(t))=\varphi_{1}\left(u_{0}\right)$. By using the functional φ_{1}, a weak closedness is recovered in a sense that if $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and $\left\{u_{n}\right\}$ is a sequence in $H^{1}\left(\mathbb{R}^{N}\right)$ converging weakly in $H^{1}\left(\mathbb{R}^{N}\right)$ to u as $n \rightarrow \infty$ and if $\lim \sup _{n \rightarrow \infty} \varphi_{1}\left(u_{n}\right) \leq \varphi_{1}(u)$, then $\varphi_{2}(u) \leq \liminf _{n \rightarrow \infty} \varphi_{2}\left(u_{n}\right)$.

The above consideration leads us to a new type of weak compactness condition $((\varphi 1)$ and $(\varphi 2)$ in the next section) of level sets of a family of functionals combined with an abstract energy identity. To formulate an energy identity, we use a d-tuple $\varphi=\left(\varphi_{j}\right)_{j=1}^{d}$ of functionals from X into $[0, \infty]$ and a comparison function g (see condition ($\varphi 2$-a)). The main result (Theorem 2.1) gives an extension of $[9$, Theorem A] and [6, Theorem 3.4].

As applications of the main result we discuss the Cauchy problem for a nonlinear Schrödinger equation and a mixed problem for a logarithmic wave equation in Sections 4 and 5 . In the final section we derive Kato and Lai's existence result from Corollary 2.3.

2. Main theorem

Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and let $\left(Y,\|\cdot\|_{Y}\right)$ be another Banach space continuously embedded in X. Then we discuss the solvability of the abstract Cauchy problem

$$
\begin{equation*}
u^{\prime}(t)=A u(t) \text { for } t>0 \quad \text { and } \quad u(0)=u_{0} \in D \tag{CP}
\end{equation*}
$$

where D is a weakly closed subset of Y and A is a nonlinear operator from D into X satisfying a weak continuity condition formulated as follows:

Let $\varphi=\left(\varphi_{i}\right)_{i=1}^{d}$ be a d-tuple of functionals from X into $[0, \infty]$ such that $D \subset D(\varphi):=\left\{v \in X ; \varphi_{j}(v)<\right.$ ∞ for $1 \leq j \leq d\}$, and then we introduce the following weak continuity condition in a local sense:
(A) If $\alpha \in \mathbb{R}_{+}^{d}, u_{n} \in D_{\alpha}(\varphi)$ for $n \geq 1, u \in D$ and $u_{n} \rightarrow u$ weakly in Y as $n \rightarrow \infty$, then $A u_{n} \rightarrow A u$ weakly in X as $n \rightarrow \infty$.

https://daneshyari.com/en/article/4614588

Download Persian Version:
https://daneshyari.com/article/4614588

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: matsumoto.toshitaka@shizuoka.ac.jp (T. Matsumoto), tanaka.naoki@shizuoka.ac.jp (N. Tanaka).

