Microprocessors and Microsystems 38 (2014) 976-990

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

TERAFLUX: Harnessing dataflow in next generation teradevices

@ CrossMark
Roberto Giorgi **, Rosa M. Badia®, Francois Bodin ¢, Albert Cohen d Paraskevas Evripidou ¢,
Paolo Faraboschi ', Bernhard Fechner?, Guang R. Gao I Arne Garbade 2, Rahul Gayatri b Sylvain Girbal,
Daniel Goodman’, Behran Khan’, Souad Koliai", Joshua Landwehr ", Nhat Minh Lé¢, Feng Li ¢,
Mikel Lujan’, Avi Mendelson ¥, Laurent Morin ¢, Nacho Navarro , Tomasz Patejko ", Antoniu Pop ¢,
Pedro Trancoso ¢, Theo Ungerer ¢, lan Watson’, Sebastian Weis &, Stéphane Zuckerman ", Mateo Valero”

2 Dip. di Ingegneria dell'Informazione e Scienze Matematiche, Universitd di Siena, Italy
b Barcelona Supercomputing Center, Spain

€ CAPS Enterprise, France

9INRIA, France

€ Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus
fIntelligent Infrastructure Lab, Hewlett Packard, Barcelona, Spain
& University of Augsburg, Germany

"University of Delaware, DE, USA

\THALES, France

I University of Manchester, United Kingdom

K Technion, Israel

ARTICLE INFO ABSTRACT

Article history:

Received 4 November 2013
Revised 5 March 2014
Accepted 7 April 2014
Available online 18 April 2014

The improvements in semiconductor technologies are gradually enabling extreme-scale systems such as
teradevices (i.e., chips composed by 1000 billion of transistors), most likely by 2020. Three major
challenges have been identified: programmability, manageable architecture design, and reliability. TER-
AFLUX is a Future and Emerging Technology (FET) large-scale project funded by the European Union,
which addresses such challenges at once by leveraging the dataflow principles. This paper presents an
overview of the research carried out by the TERAFLUX partners and some preliminary results. Our

g‘;{:"é’ggj platform comprises 1000+ general purpose cores per chip in order to properly explore the above chal-
Programming model lenges. An .archltectural templaFe has been propgse.d.and app!lcatlons have been ported to the platfor.m.
Compilation Programming models, compilation tools, and reliability techniques have been developed. The evaluation
Reliability is carried out by leveraging on modifications of the HP-Labs COTSon simulator.

Architecture © 2014 Elsevier B.V. All rights reserved.
Simulation

Many-cores

Exascale computing

Multi-cores

1. Introduction

Silicon manufacturing technologies, such as FinFET [1]
transistors and 3D-die stacking [2] that are currently available, will
allow new chips (that we call teradevices) with a huge number of

* Corresponding author. Tel.: +39 0577 191 5182; fax: +39 0577 195 9064.
E-mail addresses: giorgi@dii.unisi.it (R. Giorgi), rosa.m.badia@bsc.es (R.M. Badia),

francois.bodin@caps-entreprise.com (F. Bodin), albert.cohen@inria.fr (A. Cohen),
skevos@cs.ucy.ac.cy (P. Evripidou), paolo.faraboschi@hp.com (P. Faraboschi),
bernhard.fechner@informatik.uni-augsburg.de (B. Fechner), ggao@capsl.udel.edu
(G.R. Gao), arne.garbade@informatik.uni-augsburg.de (A. Garbade), sylvain.
girbal@thalesgroup.com (S. Girbal), koliai@eecis.udel.edu (S. Koliai), josh@eecis.
udeledu (J. Landwehr), mikel.lujan@manchester.ac.uk (M. Lujan), avi.
mendelson@tce.technion.ac.il (A. Mendelson), laurent.morin@caps-entreprise.com
(L. Morin), nacho@bsc.es (N. Navarro), antoniu.pop@inria.fr (A. Pop), pedro@cs.ucy.
ac.cy (P. Trancoso), theo.ungerer@informatik.uni-augsburg.de (T. Ungerer),
watson@cs.man.ac.uk (I. Watson), sebastian.weis@informatik.uni-augsburg.de (S.
Weis), szuckerm@eecis.udel.edu (S. Zuckerman), mateo.valero@bsc.es (M. Valero).

http://dx.doi.org/10.1016/j.micpro.2014.04.001
0141-9331/© 2014 Elsevier B.V. All rights reserved.

transistors (for current ITRS [3] projections, 1 Tera or 10'? transis-
tors), therefore opening the doors to the possibility of exploiting
the extremely large amount of parallelism in different ways. It is
expected that such systems will be able to perform at least one
Exa-FLOPS or 10'® floating-point operations per second.

In such future exascale machines, the number of general pur-
pose cores (i.e., compute elements) per die will exceed those of
current systems by far. This suggests a major change in the soft-
ware layers that are responsible of using all such cores. The three

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.04.001&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.04.001
mailto:giorgi@dii.unisi.it
mailto:rosa.m.badia@bsc.es
mailto:francois.bodin@caps-entreprise.com
mailto:albert.cohen@inria.fr
mailto:skevos@cs.ucy.ac.cy
mailto:paolo.faraboschi@hp.com
mailto:bernhard.fechner@informatik.uni-augsburg.de
mailto:ggao@capsl.udel.edu
mailto:arne.garbade@informatik.uni-augsburg.de
mailto:sylvain.girbal@thalesgroup.com
mailto:sylvain.girbal@thalesgroup.com
mailto:koliai@eecis.udel.edu
mailto:josh@eecis.udel.edu
mailto:josh@eecis.udel.edu
mailto:mikel.lujan@manchester.ac.uk
mailto:avi.mendelson@tce.technion.ac.il
mailto:avi.mendelson@tce.technion.ac.il
mailto:laurent.morin@caps-entreprise.com
mailto:nacho@bsc.es
mailto:antoniu.pop@inria.fr
mailto:pedro@cs.ucy.ac.cy
mailto:pedro@cs.ucy.ac.cy
mailto:theo.ungerer@informatik.uni-augsburg.de
mailto:watson@cs.man.ac.uk
mailto:sebastian.weis@informatik.uni-augsburg.de
mailto:szuckerm@eecis.udel.edu
mailto:mateo.valero@bsc.es
http://dx.doi.org/10.1016/j.micpro.2014.04.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

R. Giorgi et al./ Microprocessors and Microsystems 38 (2014) 976-990 977

major challenges: programmability, reliability and complexity of
design are here briefly introduced. Also, a new Program eXecution
Model [4-6] seems suited in order to address such challenges.

Given the large number of transistors and the diversity in the
requirements for different applications, it is natural to expect that
these massively parallel (or concurrent teradevice) systems will be
composed of heterogeneous cores. Thus, programmability of such
large-scale systems will be a major challenge. Moreover, such large
systems are expected to become more and more susceptible to
failures, due to the increasing sensibility to process variations
and manufacturing defects. Thus, this extreme scale of device inte-
gration represents a second major concern, in terms of reliability,
for future many-core systems. Finally, the software industry is lag-
ging behind as general purpose applications cannot take advantage
of more than a handful number of cores compared to the larger
degree of parallelism offered by the current and future processors.
Starting from this premise, there is the need for new ways to
exploit the large parallelism offered by future architectures as
expected to be a reality beyond the year 2020.

The dataflow concept is known to overcome the limitations of
the traditional control-flow model by exploring the maximum par-
allelism and reducing the synchronization overhead. As recalled by
Jack Dennis [7], dataflow is “A Scheme of Computation in which an
activity is initiated by presence of the data it needs to perform its
function”. The dataflow paradigm is not new, but recently it has
met mature silicon technology and architectural models to take
advantage from the large intrinsic parallelism.

TERAFLUX [8] is a Future Emerging Technologies (FET) large-
scale project funded by the European Union. The aim is to exploit
the dataflow paradigm in order to address the three major chal-
lenges presented above (i.e., programmability, reliability, and man-
ageable architecture design). Since we are targeting 1000+ core
systems, the dataflow paradigm enables us to use the increased
degree of parallelism which emerges in future teradevices.

The rest of the paper is organized as follows. Section 2 provides
a general overview of the project. Remaining sections are focused
on describing the concepts together with the major achievements
resulting from our research activity. In particular, Section 3 describes
possible applications based on the OmpSs programming model,
while Section 4 details a further possibility of using a productivity
language such as Scala thanks to a dataflow runtime called DFScala.
Another common layer (OpenStream, presented in Section 5) is used
for mapping feed-forward dataflow into lower-level dataflow
threads as expressed by the Tx Instruction Set Extension, described
in Section 6, together with the architecture of our target system. Sec-
tion 7 describes the Fault Detection Units (FDUs), which provide
fault detection management through monitoring techniques and
redundant execution of dataflow threads. The experiments are inte-
grated into a common simulator based on the HPLabs COTSon [9] ,
presented in Section 8. Finally, Section 9 introduces the codelet
model, while Section 10 concludes the paper.

2. General overview of the TERAFLUX project

To investigate our concepts, we use dataflow principles at any
level of a complete transformation hierarchy, starting from general
complex applications (able to load properly a teradevice system)
through programming models, compilation tools, reliability tech-
niques and architecture. Fig. 1 shows the TERAFLUX layered
approach.

Different layers allow to transform application source code into
a dataflow-style binary, and to execute it on the target architecture
(which is at the current moment based on off-the-shelf cores like
x86_64, even if our approach is Instruction Set agnostic—see
Section 8 for more details). The top level of this hierarchy is
represented by real world applications, which allow us to stress

Data
dependencies

Transactional
memory

Programming

Source code

Extract TLP Locality optimizations

O O
“

Abstraction Layer
and Reliability Layer

Virtual CPUs
possibly

- D - D - 1,000-10,000 cores...
hardware
(simulated)

Fig. 1. The TERAFLUX transformation hierarchy.

Teradevice

the underlying teradevice hardware. In the TERAFLUX project,
implicit parallelism refers to the set of constraints on the concur-
rent execution of threads, and the expression of these constraints
in the source code. These constraints can be dependencies, atomic
transactions, synchronization barriers, privatization attributes,
memory layout and extent properties, and a wide variety of hints.
An explicitly parallel program, on the other hand, is made of concur-
rency constructs making the thread creation, termination, and possi-
bly some target-specific aspects of the execution explicit [10-12].

A dataflow oriented programming model allows expressing
data dependencies among the concurrent tasks of an application.
Such concurrent tasks can be subdivided even more—at lower lev-
els—into DataFlow Threads (or DF-Threads), also simply referred as
threads when clear from the context. Nevertheless, applications use
large data structures with in-place updates, for efficient memory
management [13-15] and copy avoidance. Such applications may
require a mechanism to express the non-interference of concurrent
updates to shared data. To meet such need, we selected Transactional
Memory (TM), as the most promising programming construct and
concurrency mechanism for specifying more general forms of syn-
chronization among threads, while preserving the composability of
parallel dataflow programs and promising a high level of scalability
[16]. We achieve this by defining a specific layer for studying the inte-
gration between the TM and dataflow programming models [17-19].

Besides the programming model, implicit parallelism must be
exploited by a compilation tool-chain [20-22], being able to convert
dependencies and transactions, into scalable target-specific parallel-
ism. It is also responsible for properly managing the inter-node com-
munications and a novel memory model. Compiler effectiveness is
guaranteed by the implementation of a generalization of the state-
of-the-art algorithms to expose fine-grained dataflow threads from
task-parallel OpenMP-, StarSs- or HMPP-annotated [23,24]| pro-
grams. The algorithm generalization leverages a new dependence-
removal technique to avoid the artificial synchronizations induced
by in-place updates in the source program [25,26].

Our goals in designing an efficient compilation tool-chain are to
capture the important data reuse patterns, to optimize locality and

Download English Version:

https://daneshyari.com/en/article/461459

Download Persian Version:

https://daneshyari.com/article/461459

Daneshyari.com

https://daneshyari.com/en/article/461459
https://daneshyari.com/article/461459
https://daneshyari.com

