Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

## Lifting to the spectral ball with interpolation

Rafael B. Andrist

Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Germany

ABSTRACT

ARTICLE INFO

Article history: Received 17 May 2015 Available online 23 October 2015 Submitted by N. Young

Keywords: Spectral ball Nevanlinna–Pick Symmetrized polydisc Oka principle Interpolation

## 1. Introduction

The spectral ball is the set of square matrices with spectral radius less than 1. It appears naturally in Control Theory [4,5], but is also of theoretical interest in Several Complex Variables.

**Definition 1.1.** The *spectral ball* of dimension  $n \in \mathbb{N}$  is defined to be

 $\Omega_n := \{ A \in \operatorname{Mat} \left( n \times n; \mathbb{C} \right) : \rho(A) < 1 \}$ 

where  $\rho$  denotes the spectral radius, i.e. the modulus of the largest eigenvalue.

Note that in dimension n = 1, the spectral ball is just the unit disc. We will assume throughout the paper that  $n \ge 2$ .

The Nevanlinna–Pick problem is an interpolation problem for holomorphic functions on the unit disc  $\mathbb{D}$ . The classical *Nevanlinna–Pick problem* for holomorphic functions  $\mathbb{D} \to \mathbb{D}$  with interpolation in a finite set of points has been solved by Pick [13] and Nevanlinna [10]. The *spectral Nevanlinna–Pick problem* is the analogue interpolation problem for holomorphic maps  $\mathbb{D} \to \Omega_n$ :









We give necessary and sufficient conditions for solving the spectral Nevanlinna– Pick lifting problem. This reduces the spectral Nevanlinna–Pick problem to a jet interpolation problem into the symmetrized polydisc.

@ 2015 Elsevier Inc. All rights reserved.

E-mail address: rafael.andrist@math.uni-wuppertal.de.

Given  $m \in \mathbb{N}$  distinct points  $a_1, \ldots, a_m \in \mathbb{D}$ , decide whether there is a holomorphic map  $F: \mathbb{D} \to \Omega_n$  such that

$$F(a_j) = A_j, \ j = 1, \ldots, m$$

for given matrices  $A_1, \ldots, A_m \in \Omega_n$ .

It has been studied by many authors, in particular by Agler and Young for dimension n = 2 and generic interpolation points [1,2]. Bercovici [3] has found solutions for n = 2, and Costara [6] has found solutions for generic interpolation points in higher dimensions. In general, the problem is still open.

The spectral ball  $\Omega_n$  can also be understood in the following way: Denote by  $\sigma_1, \ldots, \sigma_n: \mathbb{C}^n \to \mathbb{C}$  the elementary symmetric polynomials in n complex variables. Let EV: Mat  $(n \times n; \mathbb{C}) \to \mathbb{C}^n$  assign to each matrix a vector of its eigenvalues. Then we denote by  $\pi_1 := \sigma_1 \circ \text{EV}, \ldots, \pi_n := \sigma_n \circ \text{EV}$  the elementary symmetric polynomials in the eigenvalues. By symmetrizing we avoid any ambiguities of the order of eigenvalues and obtain a polynomial map  $\pi = (\pi_1, \ldots, \pi_n)$ , symmetric in the entries of matrices in Mat  $(n \times n; \mathbb{C})$ , actually

$$\chi_A(\lambda) = \lambda^n + \sum_{j=1}^n (-1)^j \cdot \pi_j(A) \cdot \lambda^{n-j}$$

where  $\chi_A$  denotes the characteristic polynomial of A.

Now we can consider the holomorphic surjection  $\pi: \Omega_n \to \mathbb{G}_n$  of the spectral ball onto the symmetrized polydisc  $\mathbb{G}_n := (\sigma_1, \ldots, \sigma_n)(\mathbb{D}^n)$ . A generic fibre, i.e. a fibre above a base point with no multiple eigenvalues, consists exactly of one equivalence class of similar matrices. Thus, a generic fibre is actually a  $\mathrm{SL}_n(\mathbb{C})$ -homogeneous manifold where the group  $\mathrm{SL}_n(\mathbb{C})$  acts by conjugation. A singular fibre decomposes into several strata which are  $\mathrm{SL}_n(\mathbb{C})$ -homogeneous manifolds as well, but not necessarily connected.

Given this holomorphic surjection, it is natural to consider a weaker version of the spectral Nevanlinna– Pick problem, which is called the *spectral Nevanlinna–Pick lifting problem*:

Given  $m \in \mathbb{N}$  distinct points  $a_1, \ldots, a_m \in \mathbb{D}$ , and a holomorphic map  $f: \mathbb{D} \to \mathbb{G}_n$  with  $f(a_j) = \pi(A_j)$  for given matrices  $A_1, \ldots, A_m \in \Omega_n$ , decide whether there is a holomorphic map  $F: \mathbb{D} \to \Omega_n$  such that

$$F(a_j) = A_j, \ j = 1, \dots, m$$

i.e. such that the following diagram commutes:

When this lifting problem is solved, the spectral Nevanlinna–Pick problem reduces to an interpolation problem  $\mathbb{D} \to \mathbb{G}_n$ . In contrast to the spectral ball, the symmetrized polydisc  $\mathbb{G}_n$  is a taut domain, and should be more accessible with techniques from hyperbolic geometry. Solutions to this lifting problem have been found for dimensions n = 2, 3 by Nikolov, Pflug and Thomas [11] and recently for dimensions n = 4, 5by Nikolov, Thomas and Tran [12]. They also provide the solution to a localised version of the spectral Nevanlinna–Pick lifting problem. Download English Version:

## https://daneshyari.com/en/article/4614591

Download Persian Version:

https://daneshyari.com/article/4614591

Daneshyari.com