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1. Introduction

The spectral ball is the set of square matrices with spectral radius less than 1. It appears naturally in
Control Theory [4,5], but is also of theoretical interest in Several Complex Variables.

Definition 1.1. The spectral ball of dimension n € N is defined to be
Qp:={AeMat(nxn;C) : p(4) <1}
where p denotes the spectral radius, i.e. the modulus of the largest eigenvalue.

Note that in dimension n = 1, the spectral ball is just the unit disc. We will assume throughout the
paper that n > 2.

The Nevanlinna—Pick problem is an interpolation problem for holomorphic functions on the unit disc D.
The classical Nevanlinna—Pick problem for holomorphic functions D — D with interpolation in a finite set
of points has been solved by Pick [13] and Nevanlinna [10]. The spectral Nevanlinna—Pick problem is the
analogue interpolation problem for holomorphic maps D — 2,,:
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Given m € N distinct points aq, ..., a,, € D, decide whether there is a holomorphic map F:ID — €,, such
that

F(aj):Aj, j:l,...,m
for given matrices Aq,..., A, € Q,.

It has been studied by many authors, in particular by Agler and Young for dimension n = 2 and generic
interpolation points [1,2]. Bercovici [3] has found solutions for n = 2, and Costara [6] has found solutions
for generic interpolation points in higher dimensions. In general, the problem is still open.

The spectral ball €2,, can also be understood in the following way: Denote by o1, ..., 0,: C" — C the ele-
mentary symmetric polynomials in n complex variables. Let EV: Mat (n x n; C) — C™ assign to each matrix
a vector of its eigenvalues. Then we denote by 7 := o1 c EV,... 1, := 0, 0 EV the elementary symmetric
polynomials in the eigenvalues. By symmetrizing we avoid any ambiguities of the order of eigenvalues and
obtain a polynomial map 7 = (7, ..., m,), symmetric in the entries of matrices in Mat (n x n; C), actually

Xa(\) = A"+ (=1) - mi(A) - A
j=1

where x4 denotes the characteristic polynomial of A.

Now we can consider the holomorphic surjection m: €2, — G,, of the spectral ball onto the symmetrized
polydisc G, := (o1,...,0,)(D™). A generic fibre, i.e. a fibre above a base point with no multiple eigen-
values, consists exactly of one equivalence class of similar matrices. Thus, a generic fibre is actually a
SL,, (C)-homogeneous manifold where the group SL,(C) acts by conjugation. A singular fibre decomposes
into several strata which are SL,,(C)-homogeneous manifolds as well, but not necessarily connected.

Given this holomorphic surjection, it is natural to consider a weaker version of the spectral Nevanlinna—
Pick problem, which is called the spectral Nevanlinna—Pick lifting problem:

Given m € N distinct points as, ..., a, € D, and a holomorphic map f:D — G,, with f(a;) = 7(4,) for
given matrices Aq,..., A, € Q,, decide whether there is a holomorphic map F:ID — €, such that

F(aj) ZA]‘, j: 1,...,m
i.e. such that the following diagram commutes:

Qn

A
F 7
/ ™
/
s

]D)*fMGn

a1y .oy m = (A7), ..., m(An)

When this lifting problem is solved, the spectral Nevanlinna—Pick problem reduces to an interpolation
problem D — G,,. In contrast to the spectral ball, the symmetrized polydisc G,, is a taut domain, and
should be more accessible with techniques from hyperbolic geometry. Solutions to this lifting problem have
been found for dimensions n = 2,3 by Nikolov, Pflug and Thomas [11] and recently for dimensions n = 4,5
by Nikolov, Thomas and Tran [12]. They also provide the solution to a localised version of the spectral
Nevanlinna—Pick lifting problem.
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