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1. Introduction

In the cylindrical coordinate system with (21, z2,23) = (rcos@,rsinf, z), an axially symmetric solution
of the Navier—Stokes equations is a solution of the following form

u(x,t) = up(r, z,t)er + up(r, z,t)ep + uy(r, z,t)e,, p(x,t) = p(r, z,t),
where

Cr = (ﬂa @70) , €9 = (_Ea ﬂ7O> , €2 = (05071)

In terms of (u,,ug,u,,p), the axially symmetric Navier—Stokes equations are as follows
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2
Bty +u- Vu, — Ay + % — 2+ 9,p =0,
atue‘f‘u'VUg—AuaJ,_":_g_’_%:O’

Owuy +u-Vu, — Au, +0,p =0,

Or(ruy) + 0. (ru,) = 0.

It is well-known that finite energy smooth solutions of the Navier—Stokes equations satisfy the following
energy identity

t
[u®I3: +2 [ [Fu()]Fds = [l < +o. (1)
0

Denote I' = rug. One can easily check that
2
Ol +u- VD — AT + ;BTF =0. (1.3)

A significant consequence of (1.3) is that smooth solutions of the axially symmetric Navier—Stokes equations
satisfy the following maximum principle (see, for instance, [1,3])

[Tl Lo < [[Tollzoe- (1.4)
We can compute the vorticity

w=V Xu=uwre.+ wpeg +w,e,,

where
Wr = _az(UO)a Wy = az(ur) ar(uz)7 Wy = _aT(Tue)
Denote
= o O
T r r
then

O+ u- VO — (A+28T>Q+2%J_O,

T r

2 u (1.5)
at‘]+u VJ - (A+ Tar> J - (wrar +wzaz) TT =0.

We emphasize that J was introduced by Chen—Fang—Zhang in [2], while Q appeared much earlier and can
be at least tracked back to the book of Majda—Bertozzi in [12]. Both of the two new variables are of great
importance in our work.

Our goal is to prove that the smallness of ||T'|| o (r<ry) O [|[Tol|z> implies the global regularity of the
solutions. Here is our result.

Theorem 1.1. Let ro > 0. Suppose that ug € H? such that Tg € L. Denote

My = (14 ||Tollze)lluoll 2 and Mo = (|| Jol|r2 + [0l 2) M.
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