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In this paper, we consider the stationary Stokes equations with damping. Low order 
mixed finite element spaces are used to approximate the velocity and the pressure, 
and a local pressure projection stabilization method is used for the pairs to overcome 
the lack of the inf-sup condition. The stability of this method is proved, and the 
optimal order error estimates are derived by some nonlinear analysis techniques. At 
last, two numerical examples are implemented to test the stability and effectiveness 
of the proposed method.
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1. Introduction

In this paper, we consider the following stationary Stokes equations with damping in Rn (n = 2, 3): find 
(u, p) such that ⎧⎪⎨⎪⎩

−νΔu + α|u|r−2u + ∇p = f, in Ω,

divu = 0, in Ω,

u = 0, on ∂Ω,

(1)

where u = (u1, u2, · · · , un) and p are the fluid velocity and pressure, respectively, ν is the viscosity coefficient 
of the flow, 1 < r < ∞ and α > 0 are two damping parameters, respectively, and f is a given external force. 
Stokes equations with damping are widely used in geophysics and ocean acoustics [1,17]. The damping comes 
from the resistance to the motion of the flow, which describes various physical situations such as porous 
media flow, drag, or friction effects and some dissipative mechanisms [7,8].
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Some studies have already been devoted to the theoretical and numerical analysis of the problems with 
damping. In [10], the existence of the strong and weak solutions of the Navier–Stokes equations with non-
linear damping α|u|r−1u(r > 0) and the large time behavior of weak solutions were studied. In [27], the 
superclose and superconvergence phenomenon of some stable mixed finite elements were studied. In fact, 
there are many stable mixed finite element spaces for the Stokes problem, such as Hood–Taylor element 
[28], the Mini element [2], Bernardi–Raugel element [4] and so on. These elements are also stable for the 
Stokes problem with damping.

On the other hand, the equal order finite element spaces are very popular in the engineering 
practice, since these elements have a very convenient numerical implementation. However, these ele-
ment pairs usually do not satisfy the inf-sup condition. In order to overcome this drawback, these 
pairs are usually supplemented by the stabilization methods. Consistently stabilization methods accom-
plish this by adding the residuals of the momentum equation to the original discrete schemes, such 
as the SUPG stabilization [16,20], the Galerkin least-squares stabilization [19] and the Douglas–Wang 
stabilization [14]. These stabilization methods usually depend on the stabilization parameters. In ad-
dition, for low-order pairs, the pressure and velocity derivatives in the residual term either vanish 
or are poorly approximated. Of course, there are several stabilization methods without using resid-
uals. A very natural choice is the Brezzi–Pitkäranta stabilization method [9], but this method usu-
ally leads to a spurious homogeneous Neumann type boundary condition for the pressure. Some other 
methods are the pressure gradient projection (PGP) stabilization [12,13] and the local pressure gra-
dient projection stabilization (LPS) [3,25]. In the PGP methods, the pressure gradient is projected 
onto the continuous velocity space, and this gives rise to a globally coupled problem, while in the 
LPS methods, the pressure gradient is projected onto an element patch space, which leads to a local 
problem.

Recently, a local pressure projection stabilization was developed for low order mixed finite elements in 
[6,18]. This stabilized method is parameter free and unconditionally stable, does not require the calculation 
of higher order derivatives or edge-based data structures, and always leads to symmetric linear systems. This 
stabilization method has been applied to many problems, such as Navier–Stokes equations [15,21,23], Darcy 
equations [5], the primitive equations of the ocean [11], contact problem [24] and so on, but for the Stokes 
equations with damping, there are no researches about this method. In this paper, we will try to apply 
the stabilization method to this problem. Compared with Navier–Stokes equations, Stokes equations with 
damping are more complicated for the nonlinear damping term α|u|r−2u, while Navier–Stokes equations 
have a linear damping term. Some nonlinear analysis techniques are used in the error estimates, and the 
Picard iteration method is employed for the nonlinear damping term in the numerical implementation.

The rest of this paper is organized as follows. In section 2, we introduce some notations used throughout 
the paper, the mixed variational formulation of this problem, and a weaker form of the inf-sup condition 
that holds for the spaces of interest to us. In section 3, we give the stabilization scheme and then prove the 
stability. In section 4, we deal with the error analysis. In section 5, we implement two numerical examples 
to test the stability and accuracy of the stabilization method. In section 6, we give a conclusion.

2. Mixed finite element methods

Firstly, we introduce some notations and function spaces. Ω is a bounded and convex domain in Rn. 
For integers l > 0 and m ≥ 0, Ll(Ω) is the space of functions for which the l-th power of the absolute 
value is integrable on Ω, and Hm(Ω) is the spaces of functions whose derivatives up to the order m belong 
to L2(Ω). ‖ · ‖0, l and ‖ · ‖m denote the Sobolev norm on Ll(Ω) and Hm(Ω), respectively. Hm

0 (Ω) denotes 
the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖m. h is the mesh size. C is a positive constant whose 
value may change from place to place but remains independent of h. c with subscript is a positive constant 
independent of h.
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