
Automatic custom instruction identification for application-specific
instruction set processors

Chenglong Xiao a,⇑, Emmanuel Casseau b, Shanshan Wang a, Wanjun Liu a

a Liaoning Technical University, China
b University of Rennes I, IRISA, INRIA, France

a r t i c l e i n f o

Article history:
Available online 16 September 2014

Keywords:
Extensible processors
ASIPs
DFG
Custom instruction
Custom instruction enumeration
Custom instruction selection

a b s t r a c t

The application-specific instruction set processors (ASIPs) have received more and more attention in
recent years. ASIPs make trade-offs between flexibility and performance by extending the base instruc-
tion set of a general-purpose processor with custom functional units (CFUs). Custom instructions, exe-
cuted on CFUs, make it possible to improve performance and achieve flexibility for extensible
processors. The custom instruction synthesis flow involves two essential issues: custom instruction enu-
meration (subgraph enumeration) and custom instruction selection (subgraph selection). However, both
enumerating all possible custom instructions of a given data-flow graph and selecting the most profitable
custom instructions from the enumerated custom instructions are computationally difficult problems. In
this paper, we propose efficient algorithms for custom instruction enumeration and custom instruction
selection. Compared with previously proposed well-known enumeration algorithms, our approach can
achieve a significant speedup while generating the identical set of all possible custom instructions or only
connected custom instructions. Experimental results also show that a code size reduction rate up to 76%
can be achieved for a set of computational intensive programs, and the speed-up achieved is up to 8.2�.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Various electronic devices implemented with application-spe-
cific instruction set processors (ASIPs) can be found in the market.
Many commercial ASIPs have been proposed by several vendors.
Tensilica Xtensa [1], ARC [2], STMicroelectronic ST200 [3] and NIOS
[4] are only some of the existing ASIPs. Instruction-set extensible
processors that consist of an existing processor core extended with
application-specific custom functional units (CFUs) make trade-
offs between flexibility and efficiency.

A custom instruction is a complex instruction that encapsulates
several basic instructions. A CFU is the hardwired implementation
of a custom instruction. Generally, application programs from the
same domain have similar structure. Using the same set of custom
instructions across different application programs from the same
domain is the flexibility provided by ASIPs [5]. As the basic opera-
tors in a CFU are parallelized or chained together, embedded pro-
cessors may achieve considerable performance/energy efficiency
by executing the custom instructions on CFUs [6]. In image

processing, for example, hardwired CFUs such as dot product and
sum of absolute differences are utilized to speedup the
computations.

The key steps involved in a custom instruction synthesis flow
for ASIPs are custom instruction enumeration and custom instruc-
tion selection. However, it is really time-consuming to enumerate
custom instructions and select custom instruction from a given
program’s data-flow graph (DFG). Hence, a fully automated custom
instruction synthesis flow is necessary.

Fig. 1 presents the overview of the proposed design flow. The
design flow accepts application program written in C or C++ as
input. The application program is firstly translated to a control
data-flow graph (CDFG) using the compiler GECOS [7]. A CDFG is
a graph that represents the control dependencies among a number
of basic blocks and the data dependencies inside the basic blocks.
Then, all the subgraphs (custom instructions are represented as
subgraphs) satisfying the architectural constraints are enumerated.
Based on the enumerated subgraphs, only a subset of subgraphs
are selected as custom instructions according to different strate-
gies (minimum run time, minimum number of custom instruc-
tions, minimum power consumption, etc.). After selecting the
most profitable custom instructions, the source code is trans-
formed to a new code by incorporating the selected custom

http://dx.doi.org/10.1016/j.micpro.2014.09.001
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: chenglong.xiao@gmail.com (C. Xiao), emmanuel.casseau@

irisa.fr (E. Casseau), celine.shanshan.wang@gmail.com (S. Wang),
liuwanjun39@163.com (W. Liu).

Microprocessors and Microsystems 38 (2014) 1012–1024

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.09.001&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.09.001
mailto:chenglong.xiao@gmail.com
mailto:emmanuel.casseau@irisa.fr
mailto:emmanuel.casseau@irisa.fr
mailto:celine.shanshan.wang@gmail.com
mailto:liuwanjun39@163.com
http://dx.doi.org/10.1016/j.micpro.2014.09.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


instructions and this new code is provided to the compilation pro-
cess. Finally, the set of selected custom instructions is provided to
the hardware synthesis process to produce the corresponding
hardware (CFU) that will be added to the ASIPs.

Both custom instruction enumeration and custom instruction
selection are tackled in this paper, where the main contributions
are:

� a very efficient custom instruction enumeration algorithm that
can be tuned to enumerate all possible custom instructions or
only connected custom instructions is proposed. Experiments
with real world benchmarks show that our algorithm can
achieve orders of magnitude speedup over the state-of-the-art
algorithms;
� a heuristic algorithm and a genetic algorithm targeting a mini-

mal number of custom instructions selection strategy are pre-
sented. As exact methods like branch-and-bound algorithm
usually fail to give a solution in a reasonable time for most of
benchmarks, the genetic algorithm that can give near-optimal
solutions is proposed to evaluate the heuristic algorithm. The
quality of the results obtained using the proposed heuristic
algorithm is very close to the quality of the results produced
by the genetic algorithm;
� results for a set of real world benchmarks showing that signifi-

cant code size reduction (from 21% up to 76%) and performance
improvement (from 1.3� up to 8.2�) can be achieved.

The remainder of the paper is organized as follows. In Section 2,
the state-of-the-art is introduced. The problem formulation is
given in Section 3. Section 4 presents the proposed algorithm for
custom instruction enumeration. Custom instruction selection
algorithms that aim at selecting minimal number of custom
instructions are depicted in Section 5. Section 6 presents and eval-
uates the results of our proposed algorithms. Finally, conclusions
are presented in Section 7.

2. Related work

A lot of related researches on custom instruction enumeration
and custom instruction selection have been done in recent years.

In this section, we start our review from custom instruction enu-
meration and then discuss custom instruction selection.

2.1. Custom instruction enumeration

Many previous researches focus on identifying custom instruc-
tions (subgraphs) under I/O ports constraint and convexity con-
straint. The authors [8] are the first ones that prove the
exhaustive enumeration of subgraphs is inherently polynomial. A
polynomial time subgraph enumeration algorithm is proposed in
[9]. Several techniques have been proposed for an exhaustive enu-
meration of subgraphs, such as dynamic programming [10] and
constraint programming [11,12]. However, these methods are not
efficient when the application graphs become large. Yu et al. [13]
build only connected feasible subgraphs by enumerating upward
cones and downward cones. However, in this algorithm, a sub-
graph could be considered more than once. Authors of [14] first
present an exhaustive algorithm based on a binary decision tree
under convexity and I/O constraints. Pozzi et al. [15] further
improved this algorithm by adding a pruning criterion based on
the number of permanent inputs. Another algorithm is proposed
in [8]. The algorithm enumerates both connected feasible sub-
graphs and disjoint feasible subgraphs. A more efficient algorithm
that takes advantage of topological property of data flow graph is
proposed in [16,17].

With the use of inner state registers and shadow registers, the
maximal convex subgraphs (MCSs) can also be supported.
Pothineni et al. [18] were the first ones to propose an algorithm for
MCS enumeration. The proposed algorithm is based on an incompat-
ibility graph. However, the algorithm only generates connected
MCSs. In [19], the MCS enumeration problem is reformulated as a
maximal clique enumeration problem after grouping equivalence
nodes and building cluster graphs. Atasu et al. [20] proved that the
number of MCSs is bounded by 2jVI j, where VI is the set of invalid
nodes in the DFG. A top-down manner algorithm proposed in [21]
solves the MCS enumeration problem efficiently by a division oper-
ation on the DFG. To further speedup the enumeration process, a
more efficient algorithm is presented in [22]. The algorithm enumer-
ates all MCSs using a sandwich manner that combines the advantage
of the bottom-up manner and the top-down manner.

2.2. Custom instruction selection

According to the user’s constraints, the custom instruction can-
didates are selected either due to the high frequency of occur-
rences in the application or due to their high performance or due
to the number of nodes inside compared to other custom instruc-
tions. Therefore, developing a good custom instruction selection
method is quite vital for highest gain in performance or code size
reduction for the application. Many works were proposed for
selecting custom instructions under some of the above constraints
with different strategies (minimal number of custom instructions,
minimal execution time, etc.). Selecting bigger subgraphs such as
MCSs may result in better performance improvement [18–21]. In
general, bigger subgraphs have less reoccurrences in an application
graph. Hence, in practice, small subgraphs seem to be more
interesting if we take into account CFU reuse (area cost).

An exact algorithm [23] targeting to cover each node with min-
imal number of custom instructions converts the selection prob-
lem to a unate covering. A novel method was presented in [11],
the authors try to solve the problem by constraint programming.
The selection of custom instructions is carried out with two respec-
tive scheduling strategies: time-constrained scheduling or
resource-constrained scheduling. This method assumes that all
nodes are not able to be covered by more than one subgraph. Yu
et al. [24] proposed an optimal method based on ILP (integer linear

Fig. 1. The design flow for automatic custom instruction identification.

C. Xiao et al. / Microprocessors and Microsystems 38 (2014) 1012–1024 1013



Download English Version:

https://daneshyari.com/en/article/461462

Download Persian Version:

https://daneshyari.com/article/461462

Daneshyari.com

https://daneshyari.com/en/article/461462
https://daneshyari.com/article/461462
https://daneshyari.com

