

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The eigenvalue ratio for a class of densities

Min-Jei Huang

Department of Mathematics, National Tsing Hua University, Hsinchu 30043, Taiwan

ARTICLE INFO

Article history: Received 31 July 2015 Available online 6 November 2015 Submitted by S.A. Fulling

Keywords: Eigenvalue Eigenvalue ratio Vibrating string Symmetric density Single-well density Bessel function

ABSTRACT

We investigate the nature of the eigenvalues for vibrating strings with the density function

$$\rho = \rho(x,t) = \begin{cases} -x & \text{if } -1 \le x \le 0 \\ tx & \text{if } 0 \le x \le 1 \end{cases}$$

where t>0. The *n*th eigenvalue $\lambda_n(t)$ has a monotonicity property when t is changed. By means of Bessel functions, we obtain the limits of $\lambda_n(t)$ as $t\to 0$ and as $t\to \infty$. We also prove that the minimum of the ratio $\lambda_2(t)/\lambda_1(t)$ for t>0 occurs at t=1.

 $\ensuremath{{\mathbb O}}$ 2015 Elsevier Inc. All rights reserved.

1. Introduction

If a string with a nonnegative integrable density $\rho(x)$, $x \in [-1, 1]$, is fixed at the endpoints x = -1 and x = 1 under unit tension, then the natural frequencies of the string are determined by the eigenvalues of the boundary value problem

$$\begin{cases} u''(x) + \lambda \rho(x)u(x) = 0 & \text{in } (-1,1) \\ u(-1) = u(1) = 0. \end{cases}$$
 (1.1)

In this paper, we investigate the nature of the eigenvalues of (1.1) for the density function

$$\rho = \rho(x,t) = \begin{cases} -x & \text{if } -1 \le x \le 0\\ tx & \text{if } 0 \le x \le 1 \end{cases}$$
(1.2)

where t > 0. Indicating their dependence on the parameter t, we denote these eigenvalues by

$$0 < \lambda_1(t) < \lambda_2(t) < \lambda_3(t) < \cdots$$

E-mail address: mjhuang@math.nthu.edu.tw.

It is useful to note that if $u_n(x,t)$ is the *n*th eigenfunction corresponding to $\lambda_n(t)$, then $u_n(-x,t)$ is the *n*th eigenfunction corresponding to $\lambda_n(1/t)$. Moreover,

$$\lambda_n \left(1/t \right) = t\lambda_n \left(t \right). \tag{1.3}$$

It follows that the ratio of the nth to the mth eigenvalues of a vibrating string with fixed endpoints and with density given by (1.2) satisfies

$$\frac{\lambda_n\left(1/t\right)}{\lambda_m\left(1/t\right)} = \frac{\lambda_n\left(t\right)}{\lambda_m\left(t\right)}.\tag{1.4}$$

The purpose of this paper is to prove the following results:

(I) For every fixed n, $\lambda_n(t)$ is a strictly decreasing function of t. Moreover,

$$\lim_{t \to \infty} \lambda_n(t) = 0 \quad \text{and} \quad \lim_{t \to 0} \lambda_n(t) = \alpha_n, \tag{1.5}$$

where α_n is the unique solution of the equation

$$\frac{J_{1/3}\left(\frac{2}{3}\sqrt{x}\right)}{J_{-1/3}\left(\frac{2}{3}\sqrt{x}\right)} + \left(\frac{x}{9}\right)^{1/3} \frac{\Gamma(2/3)}{\Gamma(4/3)} = 0 \tag{1.6}$$

in the interval $(\lambda_{2n-1}(1), \lambda_{2n}(1))$. Here J_p denotes the Bessel function of the first kind of order p, and Γ denotes the Gamma function (Theorem 3.3).

(II) The ratio $\lambda_2(t)/\lambda_1(t)$ attains its minimum at t=1. Hence

$$\frac{\lambda_2\left(t\right)}{\lambda_1\left(t\right)} \ge \frac{\lambda_2\left(1\right)}{\lambda_1\left(1\right)} \approx 2.41871$$

for all t > 0 (Theorem 4.1).

There has been much work devoted to finding bounds on the ratio of the first two eigenvalues (see [2,5–9] and references therein). It is a result of Huang [6] that if ρ is a symmetric single-well density, then

$$\lambda_2/\lambda_1 \le 4 \tag{1.7}$$

with equality if and only if ρ is constant a.e. Horváth [5] gave a counterexample (step-function) which shows that the result (1.7) cannot be extended to any class of nonsymmetric single-well densities with fixed transition point q including q = 0, the midpoint of the interval [-1, 1]. An additional counterexample to this fact is given by the density (1.2). In fact, from (1.4) and (1.5), one has

$$\lim_{t \to \infty} \frac{\lambda_2\left(t\right)}{\lambda_1\left(t\right)} = \lim_{t \to 0} \frac{\lambda_2\left(t\right)}{\lambda_1\left(t\right)} = \frac{\alpha_2}{\alpha_1} \approx 5.4388 > 4.$$

Here we note that the equation (1.6) can be solved numerically for α_n with the results $\alpha_1 \approx 11.3502$, $\alpha_2 \approx 61.7324, \cdots$. Also, we remark that the density (1.2) is a continuous function.

2. Monotonicity properties of eigenvalues

Let $u_n(x,t)$ be the nth eigenfunction of (1.1)–(1.2) corresponding to $\lambda_n(t)$, normalized so that

$$\int_{-1}^{1} \rho(x,t)u_n^2(x,t)dx = 1.$$
(2.1)

Download English Version:

https://daneshyari.com/en/article/4614630

Download Persian Version:

https://daneshyari.com/article/4614630

<u>Daneshyari.com</u>