The eigenvalue ratio for a class of densities

Min-Jei Huang
Department of Mathematics, National Tsing Hua University, Hsinchu 30043, Taiwan

A R T I C L E I N F O

Article history:

Received 31 July 2015
Available online 6 November 2015
Submitted by S.A. Fulling

Keywords:

Eigenvalue
Eigenvalue ratio
Vibrating string
Symmetric density
Single-well density
Bessel function

A B S T R A C T

We investigate the nature of the eigenvalues for vibrating strings with the density function

$$
\rho=\rho(x, t)= \begin{cases}-x & \text { if }-1 \leq x \leq 0 \\ t x & \text { if } 0 \leq x \leq 1\end{cases}
$$

where $t>0$. The nth eigenvalue $\lambda_{n}(t)$ has a monotonicity property when t is changed. By means of Bessel functions, we obtain the limits of $\lambda_{n}(t)$ as $t \rightarrow 0$ and as $t \rightarrow \infty$. We also prove that the minimum of the ratio $\lambda_{2}(t) / \lambda_{1}(t)$ for $t>0$ occurs at $t=1$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

If a string with a nonnegative integrable density $\rho(x), x \in[-1,1]$, is fixed at the endpoints $x=-1$ and $x=1$ under unit tension, then the natural frequencies of the string are determined by the eigenvalues of the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+\lambda \rho(x) u(x)=0 \quad \text { in }(-1,1) \tag{1.1}\\
u(-1)=u(1)=0
\end{array}\right.
$$

In this paper, we investigate the nature of the eigenvalues of (1.1) for the density function

$$
\rho=\rho(x, t)= \begin{cases}-x & \text { if }-1 \leq x \leq 0 \tag{1.2}\\ t x & \text { if } 0 \leq x \leq 1\end{cases}
$$

where $t>0$. Indicating their dependence on the parameter t, we denote these eigenvalues by

$$
0<\lambda_{1}(t)<\lambda_{2}(t)<\lambda_{3}(t)<\cdots
$$

[^0]It is useful to note that if $u_{n}(x, t)$ is the nth eigenfunction corresponding to $\lambda_{n}(t)$, then $u_{n}(-x, t)$ is the nth eigenfunction corresponding to $\lambda_{n}(1 / t)$. Moreover,

$$
\begin{equation*}
\lambda_{n}(1 / t)=t \lambda_{n}(t) . \tag{1.3}
\end{equation*}
$$

It follows that the ratio of the nth to the m th eigenvalues of a vibrating string with fixed endpoints and with density given by (1.2) satisfies

$$
\begin{equation*}
\frac{\lambda_{n}(1 / t)}{\lambda_{m}(1 / t)}=\frac{\lambda_{n}(t)}{\lambda_{m}(t)} . \tag{1.4}
\end{equation*}
$$

The purpose of this paper is to prove the following results:
(I) For every fixed $n, \lambda_{n}(t)$ is a strictly decreasing function of t. Moreover,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \lambda_{n}(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0} \lambda_{n}(t)=\alpha_{n} \tag{1.5}
\end{equation*}
$$

where α_{n} is the unique solution of the equation

$$
\begin{equation*}
\frac{J_{1 / 3}\left(\frac{2}{3} \sqrt{x}\right)}{J_{-1 / 3}\left(\frac{2}{3} \sqrt{x}\right)}+\left(\frac{x}{9}\right)^{1 / 3} \frac{\Gamma(2 / 3)}{\Gamma(4 / 3)}=0 \tag{1.6}
\end{equation*}
$$

in the interval $\left(\lambda_{2 n-1}(1), \lambda_{2 n}(1)\right)$. Here J_{p} denotes the Bessel function of the first kind of order p, and Γ denotes the Gamma function (Theorem 3.3).
(II) The ratio $\lambda_{2}(t) / \lambda_{1}(t)$ attains its minimum at $t=1$. Hence

$$
\frac{\lambda_{2}(t)}{\lambda_{1}(t)} \geq \frac{\lambda_{2}(1)}{\lambda_{1}(1)} \approx 2.41871
$$

for all $t>0$ (Theorem 4.1).
There has been much work devoted to finding bounds on the ratio of the first two eigenvalues (see [2,5-9] and references therein). It is a result of Huang [6] that if ρ is a symmetric single-well density, then

$$
\begin{equation*}
\lambda_{2} / \lambda_{1} \leq 4 \tag{1.7}
\end{equation*}
$$

with equality if and only if ρ is constant a.e. Horváth [5] gave a counterexample (step-function) which shows that the result (1.7) cannot be extended to any class of nonsymmetric single-well densities with fixed transition point q including $q=0$, the midpoint of the interval $[-1,1]$. An additional counterexample to this fact is given by the density (1.2). In fact, from (1.4) and (1.5), one has

$$
\lim _{t \rightarrow \infty} \frac{\lambda_{2}(t)}{\lambda_{1}(t)}=\lim _{t \rightarrow 0} \frac{\lambda_{2}(t)}{\lambda_{1}(t)}=\frac{\alpha_{2}}{\alpha_{1}} \approx 5.4388>4
$$

Here we note that the equation (1.6) can be solved numerically for α_{n} with the results $\alpha_{1} \approx 11.3502$, $\alpha_{2} \approx 61.7324, \cdots$. Also, we remark that the density (1.2) is a continuous function.

2. Monotonicity properties of eigenvalues

Let $u_{n}(x, t)$ be the nth eigenfunction of (1.1)-(1.2) corresponding to $\lambda_{n}(t)$, normalized so that

$$
\begin{equation*}
\int_{-1}^{1} \rho(x, t) u_{n}^{2}(x, t) d x=1 \tag{2.1}
\end{equation*}
$$

https://daneshyari.com/en/article/4614630

Download Persian Version:
https://daneshyari.com/article/4614630

Daneshyari.com

[^0]: E-mail address: mjhuang@math.nthu.edu.tw.
 http://dx.doi.org/10.1016/j.jmaa.2015.10.079
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

