Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Embedding of generalized Lipschitz classes into classes of functions with Λ -bounded variation $\stackrel{\text{\tiny{$\widehat{m}}$}}{\rightarrow}$

Heping Wang

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

A R T I C L E I N F O

Article history: Received 23 August 2015 Available online 4 February 2016 Submitted by B. Bongiorno

Keywords: Λ-bounded variation Lipschitz classes Embedding Orlicz sequence space

ABSTRACT

In this paper, sufficient and necessary conditions for embedding of generalized Lipschitz classes H_p^{ω} , $1 into classes ABV of functions with <math>\Lambda$ -bounded variation are obtained under the mild restriction on ω .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and results

Jordan's classical concept of bounded variation was generalized by many authors and in various ways (see [1]). In particular, Waterman had introduced the notion of a function of Λ -bounded variation (see [18–20]).

Let $\Lambda = \{\lambda_n\}$ be a non-decreasing sequence of positive numbers such that $\sum 1/\lambda_n$ diverges. We say that a real-valued 1-periodic function f on [0, 1] is of Λ -bounded variation (Λ BV) if

$$V_{\Lambda}(f) := \sup_{\mathcal{I}} \sum_{n=1}^{\infty} \frac{|f(I_n)|}{\lambda_n} < +\infty,$$

where the supremum is taken over all sequences $\mathcal{I} = \{I_n\} = \{[a_n, b_n]\}$ of non-overlapping intervals in [0, 1], $f(I_n) = f(b_n) - f(a_n)$. It is obvious that if all $\lambda_n = 1$, $\{1\}$ BV coincides with the class BV of functions of the usual bounded variation.

E-mail address: wanghp@cnu.edu.cn.

 $^{^{*}}$ The author was supported by the National Natural Science Foundation of China (Project No. 11271263), the Beijing Natural Science Foundation (1132001), and BCMIIS.

Let $\omega(t)$ be a modulus of continuity, i.e., a continuous, subadditive, and nondecreasing function on $[0, +\infty)$ satisfying $\omega(0) = 0$. For $1 \le p \le \infty$, denote by $H_p^{\omega} \equiv H_p^{\omega(t)}$ the class of 1-periodic functions for which $\|f\|_{H_p^{\omega}} := \|f\|_p + \sup_{t>0} \frac{\omega(f;t)_p}{\omega(t)} < \infty$, where

$$\omega(f;t)_p := \begin{cases} \sup_{0 \le h \le t} \left\{ \int_0^1 |f(x+h) - f(x)|^p dx \right\}^{\frac{1}{p}}, & 1 \le p < \infty, \\ \sup_{0 \le h \le t} \sup_{x \in [0,1]} |f(x+h) - f(x)|, & p = \infty \end{cases}$$

is the L_p modulus of continuity of f. We write H^{ω} instead of H_{∞}^{ω} and H_p^{α} $(0 < \alpha \leq 1)$ instead of $H_p^{t^{\alpha}} \equiv \operatorname{Lip}(\alpha, p)$, the Lipschitz class, for brevity. It is well known that for each modulus of continuity ω there exists a concave modulus of continuity ω^* such that $\omega(t) \leq \omega^*(t) \leq 2\omega(t)$ for $t \in [0, \infty)$. Then $H_p^{\omega} = H_p^{\omega^*}$. In what follows, we always assume $0 < \alpha \leq 1$.

In recent years, much attention is drawn on the relationship of the class ABV and the Lipschitz class H_p^{ω} . Sharp estimates of the L_p -modulus of continuity $(1 \le p < \infty)$ of a function in terms of its Λ -variation were obtained in [14,5,6]. Furthermore, Goginava gave the necessary and sufficient condition for the inclusion of the class Λ BV in the class H_p^{ω} $(1 \le p < \infty)$ (see [2]):

$$\Lambda \mathrm{BV} \subset H_p^{\omega} \text{ if and only if } \max_{1 \le m \le n} \frac{m^{1/p}}{\sum_{k=1}^m 1/\lambda_k} = O\left(n^{1/p}\omega\left(\frac{1}{n}\right)\right) \text{ as } n \to \infty$$

This result was later generalized in [4,3,17,16].

On the other hand, the reverse embedding is also investigated. For $p = \infty$, Medvedeva showed in [10] that a sufficient and necessary condition for the embedding $H^{\omega} \subset \Lambda BV$ is that $\sum_{k=1}^{\infty} \frac{\omega(t_k)}{\lambda_k} < \infty$ for any sequence $\{t_k\}_{k=1}^{\infty}, t_k \geq 0, \sum_{k=1}^{\infty} t_k \leq 1$. The present author studied the embedding $H_p^{\omega} \subset \Lambda BV$ for $1 \leq p < \infty$ in [15], and showed that a sufficient and necessary condition for the embedding $H_p^{\alpha} \subset \{n^{\beta}\}BV, 1$ $is <math>\alpha > \max\{1/p, 1 - \beta\}$. Furthermore, Lind proved in [7] that for 1 , the embedding $<math>H_p^{\alpha} \subset \Lambda BV$ holds if and only if

$$\sum_{n=0}^{\infty} \Big(\sum_{k=2^{n}}^{2^{n+1}} \Big(\frac{1}{k^{\alpha-1/p}\lambda_{k}}\Big)^{p'}\Big)^{r'/p'} < \infty,$$
(1.1)

where $p' = \frac{p}{p-1}$, $r = \frac{1}{\alpha - 1/p}$, and $r' = \frac{1}{1+1/p-\alpha}$. We remark that (1.1) cannot be extended directly to H_p^{ω} for general modulus ω .

This paper is devoted to investigating the embedding $H_p^{\omega} \subset \Lambda BV$, 1 under some mild restriction $on <math>\omega$. The condition $\omega(t) = O(t^{1/p})$ is necessary for the embedding (see [15]). We say that a nonnegative function φ on $[0, \infty)$ satisfies Condition (P) if there exist positive constants γ , C_1 , C_2 and $\tau \in (0, 1)$ independent of t > 0 such that for any $0 < t_1 \leq t_2$,

$$\varphi(t_1)t_1^{-\gamma} \le C_1 \,\varphi(t_2)t_2^{-\gamma} \quad \text{and} \quad \varphi(t_1)t_1^{\tau-1} \ge C_2 \,\varphi(t_2)t_2^{\tau-1}$$

hold. We suppose that the functions $\omega(t)$ and $\omega_1(t) = t^{-1/p}\omega(t)$ satisfy Condition (P). This restriction on ω is justified so that functions in H_p^{ω} can be modified on a set of zero measure to be continuous, see [13]. A prototype of functions of ω is $\omega(t) = t^{\delta+1/p}(1 + (\ln 1/t)_+)^{\beta}$, $0 < \delta < 1 - 1/p$, $\beta \in \mathbb{R}$, where $a_+ = a$ if $a \ge 0$ and $a_+ = 0$ if a < 0. We shall show in Section 3 that the above ω_1 is comparable with a concave modulus of continuity $\tilde{\omega_1}$.

Let $\tilde{\omega_1}^{-1}(t) := \sup\{x \mid \tilde{\omega_1}(x) \le t, x \in [0,\infty)\}$ be the right inverse function on $[0,\infty)$ of $\tilde{\omega_1}$. Then $\tilde{\omega_1}^{-1}$ is convex and increasing on $[0,\infty)$ with $\tilde{\omega_1}^{-1}(0) = 0$. Let ψ be the complementary function of $\tilde{\omega_1}^{-1}$, i.e., $\psi(x) = \sup_{y>0}\{|x|y - \tilde{\omega_1}^{-1}(y)\}, x \in \mathbb{R}$. Then $\psi(x)$ is also convex and increasing on $[0,\infty)$ with $\psi(0) = 0$.

Download English Version:

https://daneshyari.com/en/article/4614652

Download Persian Version:

https://daneshyari.com/article/4614652

Daneshyari.com