

An abstract theorem in nonlinear analysis and two applications

A.C. Lazer ${ }^{\text {a }}$, P.J. McKenna ${ }^{\text {b,* }}$, R.H. Pellico ${ }^{\text {c }}$
a Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States
${ }^{\mathrm{b}}$ Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States
c Department of Mathematics, Trinity College, Hartford, CT 06106, United States

A R T I C L E I N F O

Article history:

Received 20 November 2015
Available online 22 January 2016
Submitted by Goong Chen

Keywords:

Elliptic
Differential equation
Boundary value problem
Nonlinear

ABSTRACT

We prove abstract multiplicity theorems for a class of nonlinear equations on the Hilbert space $L^{2}(\Omega)$. Then we use these theorems to deduce new results for two different types of nonlinear boundary value problems.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper is based on a long series of results on the nonlinear boundary value problem

$$
\begin{array}{cr}
\Delta u+b u^{+}=s \phi_{1}(x) & x \in \Omega \\
u=0 & x \in \partial \Omega \tag{1}
\end{array}
$$

where Ω is a bounded region in \mathbb{R}^{n} and ϕ_{1} denotes the first eigenfunction of the Laplacian with Dirichlet boundary conditions. The real number λ_{1} is the first of the infinite sequence of eigenvalues $\lambda_{n} \rightarrow+\infty$. The nonlinearity $b u^{+}$is a model nonlinearity for a nonlinearity of the form $f(u)$ where $f^{\prime}(+\infty)=b$ and $f^{\prime}(-\infty)=0$. More generally, we can take $f^{\prime}(-\infty)=a$ if we replace the $b u^{+}$by $b u^{+}-a u^{-}$.

Since $\phi_{1}(x) \geq 0$, it is an elementary calculation that if the real number $s>0$, the equation (1) has two obvious solutions if $\lambda_{1}<b<+\infty$. These are given by $u_{1}=-s \phi_{1} / \lambda_{1}(\leq 0)$ and $u_{2}=s \phi_{1} /\left(b-\lambda_{1}\right)(\geq 0)$. If on the other hand, $s=0$, then $u \equiv 0$ is the unique solution, whereas if $s<0$, there is no solution.

Generally, the literature can be summarized by the following two statements: if the interaction of the nonlinearity with the spectrum of the Laplacian is small, by which we mean $\lambda_{1}<b<\lambda_{2}$, then the two

[^0]"obvious" solutions are the only ones. On the other hand if there is more interaction with the spectrum, that is, if $b>\lambda_{2}$, then more "non-obvious" solutions appear. Let us make this more precise.

The earliest results go back to the early seventies [1], where the existence of at most two solutions was proved for more general nonlinearities and right hand sides. The existence of more solutions began in the early eighties in $[6,7,10,12,14,21]$ when it was shown that if $b>\lambda_{2}$, there are at least four solutions. Much more recently, it was shown in [17,18], that as $b \rightarrow+\infty$, the number of solutions goes to plus infinity.

Remark 1.1. We should also mention the "superlinear" version of equation (1), namely

$$
\begin{array}{rr}
\Delta u+b\left(u^{+}\right)^{p}=s \phi_{1}(x) & x \in \Omega \\
u=0 & \in \partial \Omega \tag{2}
\end{array}
$$

with $p>1$. This is a model for the case where $f^{\prime}(+\infty)=+\infty$. The natural conjecture here was that as the real number $s \rightarrow+\infty$, the number of solutions should also go to infinity. This proved difficult, initially, as it was only clear that there are at least two solutions. After an initial computer-aided proof of at least four solutions in [3], this was proved in [9], with further developments in $[8,20]$.

Remark 1.2. For the ordinary differential equation version of equation (1), not surprisingly, more is known. In one dimension, we take $\Omega=(0, \pi)$ and then $\phi_{1}=\sin (x)$ and $\lambda_{n}=n^{2}$. (Of course, there is also the corresponding superlinear problem.) In [13], it was shown that if $n^{2}<b<(n+1)^{2}$, then the one-dimensional version of equation (1) has at least $2 n$ solutions. In [5], it was shown that this is precise. In the case of the superlinear version, the above-mentioned conjecture was proved, in [15] and in the case of radially symmetric solutions on a ball, in [4].

The plan of this paper is the following; first we shall prove our two abstract theorems for a semilinear operator equation similar to equation (1). The hypotheses on the linear part L will be outlined at the beginning of the next section. In the following sections, we shall give applications to two cases, the first a symmetry-breaking result related to a recent result of Pacella and Srikanth [19], and the second to a different type of nonlocal linear operator, namely the fractional Laplacian.

2. The abstract result

For the rest of this section, we will be working in a closed subspace H of the Hilbert space $L^{2}(\Omega)$, where Ω is a bounded region in \mathbb{R}^{n}. The unbounded selfadjoint linear operator $L: D(L) \rightarrow H$ will satisfy the following hypotheses

1. $-L$ has an infinite sequence of eigenvalues λ_{n} with $0<\lambda_{1}<\lambda_{2}<\lambda_{3} \leq \lambda_{4} \leq \cdots \leq \lambda_{n} \leq \ldots$ so that $-L \phi_{n}=\lambda_{n} \phi_{n}$.
2. The associated eigenfunctions ϕ_{n} are an orthonormal basis for H with $\phi_{1}(x)>0$ for all $x \in \Omega$.
3. There exists $\varepsilon>0$ such that $\phi_{1}(x)>\varepsilon\left\|\phi_{2}(x)\right\|, \forall x \in \Omega$.

Typically, the space H will either be all of $L^{2}(\Omega)$, or a subspace defined by certain symmetries. We will also assume that the map $u \rightarrow b u^{+}$leaves H invariant, which will usually be satisfied if the symmetries are even.

Remark 2.1. The reader will immediately notice that the Laplacian, with Dirichlet boundary conditions of equation (1) satisfies these hypotheses. Of course, they apply to a much wider class than just this operator.

https://daneshyari.com/en/article/4614655

Download Persian Version:

https://daneshyari.com/article/4614655

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: a.lazer@math.miami.edu (A.C. Lazer), mckenna@math.uconn.edu (P.J. McKenna), ryan.pellico@trincoll.edu (R.H. Pellico).
 http://dx.doi.org/10.1016/j.jmaa.2015.11.084
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

