Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Riemann integrability versus weak continuity $\stackrel{\text{\tiny{$\Xi$}}}{=}$

Gonzalo Martínez-Cervantes

Departamento de Matemáticas, Facultad de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain

ARTICLE INFO

Article history: Received 29 October 2015 Available online 27 January 2016 Submitted by B. Bongiorno

Keywords: Riemann integral Lebesgue property Weak Lebesgue property Banach space

ABSTRACT

In this paper we focus on the relation between Riemann integrability and weak continuity. A Banach space X is said to have the weak Lebesgue property if every Riemann integrable function from [0, 1] into X is weakly continuous almost everywhere. We prove that the weak Lebesgue property is stable under ℓ_1 -sums and obtain new examples of Banach spaces with and without this property. Furthermore, we characterize Dunford–Pettis operators in terms of Riemann integrability and provide a quantitative result about the size of the set of τ -continuous nonRiemann integrable functions, with τ a locally convex topology weaker than the norm topology.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The study of the relation between Riemann integrability and continuity on Banach spaces started in 1927, when Graves showed in [13] the existence of a vector-valued Riemann integrable function not continuous almost everywhere (a.e. for short). Thus, the following problem arises:

Given a Banach space X, determine necessary and sufficient conditions for the Riemann integrability of a function $f : [0,1] \to X$.

A Banach space X for which every Riemann integrable function $f: [0,1] \to X$ is continuous a.e. is said to have the Lebesgue property (LP for short). All classical infinite-dimensional Banach spaces except ℓ_1 do not have the LP. For more details on this topic, we refer the reader to [12,6,24,14,19].

Regarding weak continuity, Alexiewicz and Orlicz constructed in 1951 a Riemann integrable function which is not weakly continuous a.e. [2]. A Banach space X is said to have the weak Lebesgue property

 $^{^{*}}$ This work was supported by the research project 19275/PI/14 funded by Fundación Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia within the framework of PCTIRM 2011–2014. This work was also supported by Ministerio de Economía y Competitividad and FEDER (project MTM2014-54182-P).

E-mail address: gonzalo.martinez2@um.es.

841

(WLP for short) if every Riemann integrable function $f : [0,1] \to X$ is weakly continuous a.e. This property was introduced in [27]. Every Banach space with separable dual has the WLP and the example of [2] shows that $\mathcal{C}([0,1])$ does not have the WLP. Other spaces with the WLP, such as $L^1([0,1])$, can be found in [5] and [28]. In this paper we focus on the relation between Riemann integrability and weak continuity. In Section 2 we present new results on the WLP. In particular, we prove that the James tree space JTdoes not have the WLP (Theorem 2.4) and we study when $\ell_p(\Gamma)$ and $c_0(\Gamma)$ have the WLP in the nonseparable case (Theorem 2.10). Moreover, we prove that the WLP is stable under ℓ_1 -sums (Theorem 2.15) and we apply this result to obtain that $\mathcal{C}(K)^*$ has the WLP for every compact space K in the class MS(Corollary 2.18).

Alexiewicz and Orlicz also provided in their paper an example of a weakly continuous nonRiemann integrable function. V. Kadets proved in [15] that a Banach space X has the Schur property if and only if every weakly continuous function $f : [0,1] \to X$ is Riemann integrable. Wang and Yang extended this result in [29] to arbitrary locally convex topologies weaker than the norm topology. In the last section of this paper we give an operator theoretic form of these results that, in particular, provides a positive answer to a question posed by Sofi in [26].

1.1. Terminology and preliminaries

All Banach spaces are assumed to be real. In what follows, X^* denotes the dual of a Banach space X. The weak and weak^{*} topologies of X and X^* will be denoted by ω and ω^* respectively. By an operator we mean a linear continuous mapping between Banach spaces. The Lebesgue measure in \mathbb{R} is denoted by μ . The interior of an interval I will be denoted by $\operatorname{Int}(I)$. The density character dens(T) of a topological space T is the minimal cardinality of a dense subset. A partition of the interval $[a, b] \subset \mathbb{R}$ is a finite collection of non-overlapping closed subintervals covering [a, b]. A tagged partition of the interval [a, b] is a partition $\{[t_{i-1}, t_i] : 1 \leq i \leq N\}$ of [a, b] together with a set of points $\{s_i : 1 \leq i \leq N\}$ that satisfy $s_i \in (t_{i-1}, t_i)$ for each i.

Let $\mathcal{P} = \{(s_i, [t_{i-1}, t_i]) : 1 \leq i \leq N\}$ be a tagged partition of [a, b]. For every function $f : [a, b] \to X$, we denote by $f(\mathcal{P})$ the Riemann sum $\sum_{i=1}^{N} (t_i - t_{i-1}) f(s_i)$. The norm of \mathcal{P} is $\|\mathcal{P}\| := \max\{t_i - t_{i-1} : 1 \leq i \leq N\}$. We say that a function $f : [a, b] \to X$ is Riemann integrable, with integral $x \in X$, if for every $\varepsilon > 0$ there is $\delta > 0$ such that $\|f(\mathcal{P}) - x\| < \varepsilon$ for all tagged partitions \mathcal{P} of [a, b] with norm less than δ . In this case, we write $x = \int_a^b f(t) dt$.

The following criterion will be used for proving the existence of the Riemann integral of certain functions:

Theorem 1.1. (See [12].) Let $f : [0,1] \to X$. The following statements are equivalent:

- 1. The function f is Riemann integrable.
- 2. For each $\varepsilon > 0$ there exists a partition $\mathcal{P}_{\varepsilon}$ of [0,1] with $||f(\mathcal{P}_1) f(\mathcal{P}_2)|| < \varepsilon$ for all tagged partitions \mathcal{P}_1 and \mathcal{P}_2 of [0,1] that have the same intervals as $\mathcal{P}_{\varepsilon}$.
- 3. There is $x \in X$ such that for every $\varepsilon > 0$ there exists a partition $\mathcal{P}_{\varepsilon}$ of [0,1] such that $||f(\mathcal{P}) x|| < \varepsilon$ whenever \mathcal{P} is a tagged partition of [0,1] with the same intervals as $\mathcal{P}_{\varepsilon}$.

We will also be concerned about cardinality. Throughout this paper, \mathfrak{c} denotes the cardinality of the continuum and $\operatorname{cov}(\mathcal{M})$ denotes the smallest cardinal such that there exist $\operatorname{cov}(\mathcal{M})$ nowhere dense sets in [0,1] whose union is the interval [0,1]. This cardinal coincides with the smallest cardinal such that there exist $\operatorname{cov}(\mathcal{M})$ closed sets in [0,1] with Lebesgue measure zero whose union does not have Lebesgue measure zero (see [4, Theorem 2.6.14]).

Download English Version:

https://daneshyari.com/en/article/4614662

Download Persian Version:

https://daneshyari.com/article/4614662

Daneshyari.com