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As is known, solving the interior problem with prior data specified on a finite 
collection of intervals Ii is equivalent to analytic continuation of a function from 
Ii to an open set J. In the paper we prove that this analytic continuation can be 
obtained with the help of a simple explicit formula, which involves summation of a 
series. Our second result is that the operator of analytic continuation is not stable 
for any pair of Sobolev spaces regardless of how close the set J is to Ii. Our main 
tool is the singular value decomposition of the operator H−1

e that arises when the 
interior problem is reduced to a problem of inverting the Hilbert transform from 
incomplete data. The asymptotics of the singular values and singular functions of 
H−1

e , the latter being valid uniformly on compact subsets of the interior of Ii, was 
obtained in [5]. Using these asymptotics we can accurately measure the degree of 
ill-posedness of the analytic continuation as a function of the target interval J. 
Our last result is the convergence of the asymptotic approximation of the singular 
functions in the L2(Ii) sense. We also present a preliminary numerical experiment, 
which illustrates how to use our results for reducing the instability of the analytic 
continuation by optimizing the position of the intervals with prior knowledge.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Suppose one is interested in imaging a small region of interest (ROI) inside an object using tomography. 
In order to acquire a complete data set that enables stable reconstruction, one needs to send multiple x-rays 
through the object from many different directions. In particular, the x-rays that do not pass through the 
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ROI are required as well. The interior problem of tomography arises when only the x-rays through the 
ROI are measured. In this case the tomographic data are incomplete, and image reconstruction becomes 
a challenging problem. In what follows, image reconstruction from x-ray data taylored to an ROI will be 
called the interior problem, and the corresponding data will be called interior data. Practical importance of 
the interior problem is clear, since tayloring the x-ray exposure to an ROI results in a reduced x-ray dose 
to the patient in medical applications of tomography. See [28] for a nice review of the state of the art in 
interior tomography.

One of the most powerful tools for investigating the interior problem from the theoretical point of view 
is the Gelfand–Graev formula, which relates the tomographic data of an object with its one-dimensional 
Hilbert transform along lines [13]. With the help of this formula, the interior problem of tomography can be 
reduced to the problem of inverting the Hilbert transform from incomplete data, see e.g. [23,7,32,31,29,30,
20,6]. A more recent line of research based on a differential operator that commutes with the Finite Hilbert 
Transform (FHT) is represented by the papers [16,15,18,2,1].

Let f be sufficiently smooth and compactly supported. The (restricted) cone beam transform of f is 
defined as a collection of integrals of f along lines intersecting a curve Γ:

Df (y, β) =
∞∫
0

f(y + tβ)dt, y ∈ Γ, (1.1)

where β is a unit vector. We assume that Γ is piecewise smooth and does not intersect the support of f . In 
practice, Γ is called the source trajectory. The data Df are collected by moving the x-ray source along Γ, 
irradiating the object with multiple x-ray beams, and measuring the intensities of the beams after they exit 
the object.

Let y(s) be a parametrization of Γ. We assume that Γ does not self-intersect and is traversed in one 
direction as s varies over some interval I. Pick any two values s1, s2 ∈ I, s1 �= s2. Let α be a unit vector 
along the chord y(s1), y(s2). Then one has [13]:

1
2

s2∫
s1

1
|x− y(s)|

∂

∂λ
Df

(
y(λ), x− y(s)

|x− y(s)|

)∣∣∣∣
λ=s

ds =
∫

f(x + tα)
t

dt, (1.2)

where x is located on the chord between y(s1) and y(s2). Equation (1.2) implies that knowing the cone 
beam transform of f one can compute the Hilbert transform of f on the chords of Γ.

Fix any chord [y(s1), y(s2)] of Γ, and let L be the line determined by the chord. Source trajectories that 
are commonly used in practice have the property that for any point in the object support there is a chord 
of Γ containing that point. In what follows we regard L as the x-axis. Fix some 2g + 2, g ∈ N, distinct 
points ai on L: ai < ai+1, i = 1, 2, . . . , 2g + 1. Points a1 and a2g+2 mark the boundaries of the support of f
along L. Points a2 and a2g+1 mark the boundaries of the ROI along L. Consider the FHT

(Hf)(x) := 1
π

a2g+2∫
a1

f |L(y)
y − x

dy, f |L ∈ L2([a1, a2g+2]). (1.3)

Here f |L is the restriction of f to L, and Hf is the one-dimensional Hilbert transform of f |L. Throughout 
the paper the line L is always the same, so with some abuse of notation we write f instead of f |L. In the 
case of interior tomographic data, the Gelfand–Graev formula allows computation of Hf only on [a2, a2g+1], 
but not on all [a1, a2g+2]. Thus the interior problem of tomography is reduced to finding f inside the ROI, 
i.e. on [a2, a2g+1], by solving the equation

(Hf)(x) = ϕ(x), x ∈ [a2, a2g+1]. (1.4)
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