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1. Introduction

The objective of this study is to analyze a nonlinear weighted least-squares finite element method for the
Carreau—Yasuda non-Newtonian model based on the Navier—Stokes equations. The Carreau—Yasuda model
is a popular non-Newtonian model for describing the shear-thinning behavior of blood in hemodynamic
simulations [5,16].

Let Q be an open, connected, and bounded domain in R%, d = 2 or 3 with boundary I". The steady-state,
incompressible Navier—Stokes equation with the velocity boundary condition can be posed as follows:
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where D(u) = 0.5(Vu + Vu7) is the standard strain rate tensor. Re > 1 is the Reynolds number,
Re = LUp/ng, in which 7y is the zero-shear-rate viscosity, L and U are characteristic length and veloc-
ity, respectively, and p is the density. f is the body force vector, the unknowns u and 7 are the velocity and
the extra-stress tensor, respectively, and p is the scalar pressure. We assume that the pressure p satisfies a

/pdx: 0,
Q

in order to assure the uniqueness of pressure [2]. As for the system (1), it is illustrated in [4] that the system

zero mean constraint:

is suitable for incompressible non-Newtonian flows when a direct approximation of the extra stress tensor
is desired.

Let 4(u) = \/2(D(u) : D(u)) be the shear rate with the double-dot product between two second-order
tensors T and o defined as

T:U:ZTijUji~
1.7

We implement the non-Newtonian fluid equation known as the Carreau—Yasuda model [5], i.e.

n—1

n(¥(w) = noe + (M0 — no0) [1 + Ay ()] =, (2)

where a, n, and A. are determined constant parameters. a > 0 is the dimensionless parameter, A, is the
Carreau time constant, and the parameter n is the power law exponent. In the case of n = 1, the model
reduces to the linear Newtonian model, i.e. the Navier—Stokes equations. For a shear-thinning fluid, n is
less than one, the viscosity decreases by increasing shear rate. At high shear rates, the viscosity of the fluid
is 10, Whereas at low shear rates, the viscosity is 79. Sample values of the parameters in the Carreau—Yasuda
model are given in [1]. They indicate that many concentrated polymer solutions and melts can be obtained
for a = 2 and 7, = 0. Equation (2), with a = 2, is usually referred to as the Carreau equation, and the
parameter a is added later by Yasuda; see [1].

Numerous developments using least-squares finite element methods for non-Newtonian fluid flow problems
have been made in recent years [4,6,8-12]. Least-squares finite element methods have been reported to offer
several theoretical and computational advantages over the Galerkin method for various boundary value
problems [2]. Discretization generates an algebraic system that is always symmetric and positive definite,
and a single approximating space for all variables can be used for programming least-squares finite element
methods [14]. The least-squares functional of the velocity—pressure—stress formulation has the advantage
that stress tensor components are computed directly [13]. Hence, the method is suitable for cases in which
a direct approximation of the extra stress tensor is necessary (e.g., non-Newtonian fluid flows).

In [4], Bose and Carey present a least-squares method using p-type finite elements and a mesh redistri-
bution for non-Newtonian flows, and indicate the importance of scaling in the original differential equations
for the least-squares minimization process. In [14], Lee and Chen propose a nonlinear weighted least-squares
(NL-WDLS) method that allows for the use of simple combinations of interpolations, including equal-order
linear elements for Stokes equations. They indicate the choice of weights used to balance the residual con-
tributions, and their results show some improvement over the case with no weightings. On the basis of
their ideas, NL-WDLS methods based on the velocity—stress—pressure formulation of Stokes equations have
been applied to generalized Newtonian and viscoelastic fluid flows in numerical experiments [8,11]. The
results indicate that when linear approximations in all variables are employed, the least-squares solutions
exhibit numerical convergence rates of O(h?) in the L?-norm for all dependent variables (or nearly so for
the viscoelastic case). In [12], an adaptively refined least-squares (AR-LS) approach with an inertial term
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