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We study a nonlinear weighted least-squares finite element method for the Navier–
Stokes equations governing non-Newtonian fluid flows by using the Carreau–Yasuda 
model. The Carreau–Yasuda model is used to describe the shear-thinning behavior 
of blood. We prove that the least-squares approximation converges to linearized 
solutions of the non-Newtonian model at the optimal rate. By using continuous 
piecewise linear finite element spaces for all variables and by appropriately adjusting 
the nonlinear weighting function, we obtain optimal L2-norm error convergence 
rates in all variables. Numerical results are given for a Carreau fluid in the 4-to-1 
contraction problem, revealing the shear-thinning behavior. The physical parameter 
effects are also investigated.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The objective of this study is to analyze a nonlinear weighted least-squares finite element method for the 
Carreau–Yasuda non-Newtonian model based on the Navier–Stokes equations. The Carreau–Yasuda model 
is a popular non-Newtonian model for describing the shear-thinning behavior of blood in hemodynamic 
simulations [5,16].

Let Ω be an open, connected, and bounded domain in Rd, d = 2 or 3 with boundary Γ. The steady-state, 
incompressible Navier–Stokes equation with the velocity boundary condition can be posed as follows:

u · ∇u −∇ · τ + ∇p = f̂ in Ω,

τ − 2η (γ̇(u))D(u)
η0Re = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ, (1)
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where D(u) = 0.5(∇u + ∇uT ) is the standard strain rate tensor. Re ≥ 1 is the Reynolds number, 
Re ≡ LUρ/η0, in which η0 is the zero-shear-rate viscosity, L and U are characteristic length and veloc-
ity, respectively, and ρ is the density. f̂ is the body force vector, the unknowns u and τ are the velocity and 
the extra-stress tensor, respectively, and p is the scalar pressure. We assume that the pressure p satisfies a 
zero mean constraint: ∫

Ω

pdx = 0,

in order to assure the uniqueness of pressure [2]. As for the system (1), it is illustrated in [4] that the system 
is suitable for incompressible non-Newtonian flows when a direct approximation of the extra stress tensor 
is desired.

Let γ̇(u) =
√

2 (D(u) : D(u)) be the shear rate with the double-dot product between two second-order 
tensors τ and σ defined as

τ : σ =
∑
i,j

τ ijσji.

We implement the non-Newtonian fluid equation known as the Carreau–Yasuda model [5], i.e.

η(γ̇(u)) = η∞ + (η0 − η∞)[1 + (λcγ̇(u))a]
n−1
a , (2)

where a, n, and λc are determined constant parameters. a > 0 is the dimensionless parameter, λc is the 
Carreau time constant, and the parameter n is the power law exponent. In the case of n = 1, the model 
reduces to the linear Newtonian model, i.e. the Navier–Stokes equations. For a shear-thinning fluid, n is 
less than one, the viscosity decreases by increasing shear rate. At high shear rates, the viscosity of the fluid 
is η∞, whereas at low shear rates, the viscosity is η0. Sample values of the parameters in the Carreau–Yasuda 
model are given in [1]. They indicate that many concentrated polymer solutions and melts can be obtained 
for a = 2 and η∞ = 0. Equation (2), with a = 2, is usually referred to as the Carreau equation, and the 
parameter a is added later by Yasuda; see [1].

Numerous developments using least-squares finite element methods for non-Newtonian fluid flow problems 
have been made in recent years [4,6,8–12]. Least-squares finite element methods have been reported to offer 
several theoretical and computational advantages over the Galerkin method for various boundary value 
problems [2]. Discretization generates an algebraic system that is always symmetric and positive definite, 
and a single approximating space for all variables can be used for programming least-squares finite element 
methods [14]. The least-squares functional of the velocity–pressure–stress formulation has the advantage 
that stress tensor components are computed directly [13]. Hence, the method is suitable for cases in which 
a direct approximation of the extra stress tensor is necessary (e.g., non-Newtonian fluid flows).

In [4], Bose and Carey present a least-squares method using p-type finite elements and a mesh redistri-
bution for non-Newtonian flows, and indicate the importance of scaling in the original differential equations 
for the least-squares minimization process. In [14], Lee and Chen propose a nonlinear weighted least-squares 
(NL-WDLS) method that allows for the use of simple combinations of interpolations, including equal-order 
linear elements for Stokes equations. They indicate the choice of weights used to balance the residual con-
tributions, and their results show some improvement over the case with no weightings. On the basis of 
their ideas, NL-WDLS methods based on the velocity–stress–pressure formulation of Stokes equations have 
been applied to generalized Newtonian and viscoelastic fluid flows in numerical experiments [8,11]. The 
results indicate that when linear approximations in all variables are employed, the least-squares solutions 
exhibit numerical convergence rates of O(h2) in the L2-norm for all dependent variables (or nearly so for 
the viscoelastic case). In [12], an adaptively refined least-squares (AR-LS) approach with an inertial term 
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