Contents lists available at ScienceDirect

EVIEF

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Sets of uniqueness for uniform limits of polynomials in several complex variables

K. Makridis^{*}, V. Nestoridis

University of Athens, Department of Mathematics, 157 84 Panepistimioupolis, Athens, Greece

ARTICLE INFO

Article history: Received 19 November 2014 Available online 22 July 2015 Submitted by E.J. Straube

Dedicated to Professor S. Negrepontis for his 75th birthday

Keuwords: Polydisc algebra Infinite dimensional holomorphy Polynomial approximation Chordal distance

ABSTRACT

We investigate the sets of uniform limits $A(\overline{B}_n)$, $A(\overline{D}^I)$ of polynomials on the closed unit ball \overline{B}_n of \mathbb{C}^n and on the cartesian product \overline{D}^I where I is an arbitrary set, maybe finite, infinite denumerable or non-denumerable and \overline{D} is the closed unit disc in \mathbb{C} . The class $A(\overline{D}^I)$ contains exactly all functions $f:\overline{D}^I\to\mathbb{C}$ continuous with respect to the product topology on \overline{D}^I and separately holomorphic. We consider sets of uniqueness for $A(\overline{D}^I)$ (respectively for $A(\overline{B}_n)$) to be compact subsets K of T^{I} (respectively of $\partial \overline{B}_{n}$) where $T = \partial D$ is the unit circle. If K has positive measure then K is a set of uniqueness. The converse does not hold. Finally, we do a similar study when the uniform convergence is not meant with respect to the usual Euclidean metric in \mathbb{C} , but with respect to the chordal metric χ on $\mathbb{C} \cup \{\infty\}$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

If D is the open unit disc in \mathbb{C} and \overline{D} its closure, then the set of the uniform limits on \overline{D} of polynomials (with respect to the usual Euclidean metric in \mathbb{C}) is the well-known disc algebra $A(\overline{D})$; that is the set of all functions $f: \overline{D} \to \mathbb{C}$ continuous on \overline{D} and holomorphic in D.

By Privalov's theorem, a compact set $K \subseteq \partial D = T$ with positive measure is a set of uniqueness for $A(\overline{D})$; that is if $f, q \in A(\overline{D})$ coincide on K, then they coincide on \overline{D} . This notion of set of uniqueness is compatible with the ones in [2] and [6]. In fact, the converse also holds: a compact set $K \subseteq T$ is a set of uniqueness for $A(\overline{D})$ if and only if K has a positive measure.

We extend some of the previous results in several complex variables, when \overline{D} is replaced by \overline{D}^{I} (I arbitrary set even infinite non-denumerable) or the unit ball \overline{B}_n of \mathbb{C}^n .

First, we investigate the set of the uniform limits of polynomials. Of course, every polynomial depends on a finite number of variables, even if I is infinite. Thus, we find the classes $A(\overline{D}^I)$ and $A(\overline{B}_n)$ respectively. The class $A(\overline{D}^I)$ contains exactly all functions $f:\overline{D}^I\to\mathbb{C}$ continuous on \overline{D}^I (where \overline{D}^I is endowed with the cartesian topology) which separately as functions of each variable belong to $A(\overline{D})$. The class $A(\overline{B}_n)$

Corresponding author.

霐

CrossMark

E-mail addresses: kmak167@gmail.com (K. Makridis), vnestor@math.uoa.gr (V. Nestoridis).

We consider T^I $(T = \partial D)$ the distinguished boundary of \overline{D}^I and we also consider compact sets $K \subseteq T^I$ of uniqueness for $A(\overline{D}^I)$. If a compact set $K \subseteq T^I$ has positive measure (with respect to the natural measure on T^I), then K is a set of uniqueness for $A(\overline{D}^I)$. This is based on Privalov's theorem [7] combined with Fubini's theorem. We also give some examples of compact sets $K \subseteq T^I$ with zero measure which are also sets of uniqueness for $A(\overline{D}^I)$, provided that I contains at least two elements.

The boundary $\partial \overline{B}_n$ of the ball of \mathbb{C}^n also carries a natural measure. We prove that if $K \subseteq \partial \overline{B}_n$ has a positive measure, then K is a set of uniqueness for $A(\overline{B}_n)$. To prove this we do not use an integral representation but we use the corresponding result on the polydisc. If $n \geq 2$ the converse fails.

Next, we repeat all the previous study by replacing the usual Euclidean metric on \mathbb{C} by the chordal metric χ on $\mathbb{C} \cup \{\infty\}$. We investigate the set of uniform limits on \overline{D}^I or \overline{B}_n of polynomials with respect to χ . Thus, we find the classes $\tilde{A}(\overline{D})$, $\tilde{A}(\overline{D}^I)$ and $\tilde{A}(\overline{B}_n)$. The class $\tilde{A}(\overline{D})$ contains $A(\overline{D})$ and is strictly larger, because it contains the function $\frac{1}{1-z}$ which does not belong to $A(\overline{D})$. The precise statement is that a function $f: \overline{D} \to \mathbb{C} \cup \{\infty\}$ belongs to $\tilde{A}(\overline{D})$ if and only if $f \equiv \infty$ or if f is continuous on \overline{D} , $f(D) \subseteq \mathbb{C}$ and f is holomorphic in D [1,9].

A compact set $K \subseteq T = \partial \overline{D}$ is a set of uniqueness for $\tilde{A}(\overline{D})$ if and only if it has positive measure. Furthermore, the class $\tilde{A}(\overline{D}^I)$ contains exactly all functions $f : \overline{D}^I \to \mathbb{C} \cup \{\infty\}$ continuous on \overline{D}^I (where \overline{D}^I is endowed with the cartesian topology), which separately for each variable belongs to $\tilde{A}(\overline{D})$.

We consider the notion of a set of uniqueness for $\tilde{A}(\overline{D}^I)$ for compact subsets $K \subseteq T^I(T = \partial D)$ and we prove that if K has positive measure, then it is a set of uniqueness for $\tilde{A}(\overline{D}^I)$. If I contains at least two elements, the converse fails. Since $A(\overline{D}^I) \subseteq \tilde{A}(\overline{D}^I)$, every set of uniqueness for $\tilde{A}(\overline{D}^I)$ is also a set of uniqueness for $A(\overline{D}^I)$. We do not know if the converse holds.

If we endow $A(\overline{D}^I)$ and $\tilde{A}(\overline{D}^I)$ with their natural metrics they become complete metric spaces. In fact, $A(\overline{D}^I)$ is a Banach algebra. Furthermore, the relative topology of $A(\overline{D}^I)$ from $\tilde{A}(\overline{D}^I)$ coincides with the natural topology of $A(\overline{D}^I)$ and $A(\overline{D}^I)$ is open and dense in $\tilde{A}(\overline{D}^I)$.

Finally, we obtain similar results when \overline{D}^I is replaced by \overline{B}_n . We notice that in the proof of the main results for \overline{B}_n we use the analogous result for \overline{D}^I .

We give a few examples of functions belonging to the previously studied classes. Let $f((z_j)_{j=1}^{\infty}) = \sum_{j=1}^{\infty} \frac{z_j}{j^2}$

for all $(z_j)_{j=1}^{\infty} \in \overline{D}^{\mathbb{N}}$; then $f \in A(\overline{D}^{\mathbb{N}})$.

Let $g(z_1, z_2) = \frac{1}{1-z_1z_2}$; then $g \in \tilde{A}(\overline{D}^2)$. The previous function f belongs to $A(\overline{D}^{\mathbb{N}})$ and its image is bounded; therefore, if |c| is big enough, the function $c+f(z_1, z_2, \cdots)$ does not vanish at any point of $\overline{D}^{\mathbb{N}}$. Then the function $\frac{c+f(z_1, z_2, \cdots)}{1-z_1}$ also belongs to $\tilde{A}(\overline{D}^{\mathbb{N}})$ and depends on all variables z_1, z_2, \cdots . What is a less trivial example of a function belonging to $\tilde{A}(\overline{D}^{\mathbb{N}})$? The class $A(\overline{B}_n)$ is well-known. What are non-trivial examples of functions belonging to $\tilde{A}(\overline{B}_n)$? Such functions are $\omega(z_1, z_2) = \frac{1}{1-z_1}$ and $T(z_1, \cdots, z_n) = \frac{1}{1-z_1^2-z_2^2-\ldots z_n^2}$ with $(z_1, z_2, \cdots, z_n) \in \overline{B}_n$.

An open issue is to study the structure of the element of $\tilde{A}(\overline{D}^I)$ and $\tilde{A}(\overline{B}_n)$. The cases of $A(\overline{D}^I)$ and $A(\overline{B}_n)$ have already been studied if I is a finite set. What happens if I is an infinite set? What is a characterization of the zero sets of elements of $\tilde{A}(\overline{D}^I)$, $\tilde{A}(\overline{B}_n)$ and $A(\overline{D}^I)$, $A(\overline{B}_n)$ when I is infinite? What can be said about compact sets of interpolation for the previous classes? What about peak sets or null-sets? (See [11,12].)

One can see that if $f \in A(\overline{D}^I)$, $f \neq 0$ then $\log|f|$ is integrable on T^I with respect to the natural measure. Using a result from [4] one can prove that if $f \in \tilde{A}(\overline{D})$, $f \neq \infty$ then f belongs to the Nevanlinna class; Download English Version:

https://daneshyari.com/en/article/4614705

Download Persian Version:

https://daneshyari.com/article/4614705

Daneshyari.com