

# Nonlocal elliptic equations involving measures 

CrossMark

Guangying Lv ${ }^{\text {a }}$, Jinqiao Duan ${ }^{\mathrm{b}, *}$, Jinchun $\mathrm{He}^{\mathrm{c}}$<br>a Institute of Contemporary Mathematics, Henan University, Kaifeng, Henan 475001, China<br>b Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, United States<br>${ }^{\text {c }}$ School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China

## A R T I C L E I N F O

## Article history:

Received 25 November 2014
Available online 10 July 2015
Submitted by Y. Du

## Keywords:

Nonlocal Laplacian
Radon measure
Marcinkiewicz spaces
Green kernel


#### Abstract

In this article, we study the existence of solution for the problem $(-\Delta)^{\alpha} u=$ $\lambda f(u)+\nu$ in $\Omega, u \equiv 0$ in $\mathbb{R}^{N} \backslash \Omega$, where $\lambda>0$ is a parameter, $\alpha \in(0,1)$ and $\nu$ is a Radon measure. A weak solution is obtained by using Schauder's fixed point theorem. In the case where $\nu$ is Dirac measure, the symmetry of the solution is obtained by using the moving plane method.


© 2015 Elsevier Inc. All rights reserved.

## 1. Introduction

In recent years, fractional (nonlocal) Laplacian operator has been extensively studied by many authors $[7,8,6,2,10,16,17,15]$. It is well known that the corresponding Fokker-Planck equation to a stochastic differential equation with Brownian motion is the traditional diffusion equation. When the Brownian motion is replaced by an $\alpha$-stable Lévy motion (a non-Gaussian process) $L_{t}^{\alpha}, \alpha \in(0,2)$, the Fokker-Planck equation becomes a nonlocal partial differential equation [1] with a fractional Laplacian operator $(-\Delta)^{\frac{\alpha}{2}}$. There are many physical motivations to consider the fractional Laplacian operator, which appears in many models in non-Newtonian fluids, in models of viscoelasticity such as Kelvin-Voigt models, various heat transfer processes in fractal and disordered media and models of fluid flow and acoustic propagation in porous media $[3,13,14]$. Interestingly, it has also been applied to pricing derivative securities in financial market, see [3] for details.

Recently, Chen and Véron [8] considered the following problem:

$$
\left\{\begin{array}{l}
(-\Delta)^{\alpha} u+g(u)=\nu, \quad t>0, x \in \Omega  \tag{1.1}\\
\left.u\right|_{\Omega^{c}}=0
\end{array}\right.
$$

[^0]where $\Omega \subset \mathbb{R}^{N}$ is an open bounded $C^{2}$ domain, $\alpha \in(0,1), \nu$ is a Radon measure such that $\int_{\Omega} \delta^{\beta} d|\nu|<\infty$ for some $\beta \in[0, \alpha]$ and $\delta(x)=\operatorname{dist}\left(x, \Omega^{c}\right)$. The nonlocal Laplacian $(-\Delta)^{\alpha}$ is defined by
$$
(-\Delta)^{\alpha} u(x)=\lim _{\varepsilon \downarrow 0}(-\Delta)_{\varepsilon}^{\alpha} u(x),
$$
where for $\varepsilon>0$
$$
(-\Delta)_{\varepsilon}^{\alpha} u(x)=c_{n, \alpha} \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{n+2 \alpha}} \chi_{\varepsilon}(|x-y|) d y
$$
and
\[

\chi_{\varepsilon}(x)= $$
\begin{cases}0, & \text { if } x \in[0, \varepsilon] \\ 1, & \text { if } x>\varepsilon\end{cases}
$$
\]

They proved that (1.1) admits a unique weak solution $u$ under the condition that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous, non-decreasing function, satisfying

$$
g(r) r \geq 0, \quad \forall r \in \mathbb{R} \text { and } \int_{1}^{\infty}(g(s)-g(-s)) s^{-1-k_{\alpha, \beta}} d s<\infty
$$

where

$$
k_{\alpha, \beta}= \begin{cases}\frac{N}{N-2 \alpha}, & \text { if } \beta \in\left[0, \frac{N-2 \alpha}{N} \alpha\right]  \tag{1.2}\\ \frac{N+\alpha}{N-2 \alpha+\beta}, & \text { if } \beta \in\left(\frac{N-2 \alpha}{N} \alpha, \alpha\right]\end{cases}
$$

In their another paper [7], they obtained the existence of weak solution to (1.1), where $g(u)$ was replaced by $\varepsilon g(|\nabla u|), \varepsilon= \pm 1$. When the measure $\nu$ is just a bounded function $g(x)$, the existence of solutions to (1.1) has been studied in [18] via variational methods.

Ros-Oton and Serra [16] studied the extremal solution for the following problem:

$$
\left\{\begin{array}{l}
(-\Delta)^{\alpha} u=\lambda f(u), \quad \text { in } \Omega  \tag{1.3}\\
\left.u\right|_{\Omega^{c}}=0,
\end{array}\right.
$$

where $\lambda>0$ is a parameter, $\alpha \in(0,1)$ and $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
f \in C^{1}, \quad \text { non-decreasing, } \quad f(0)>0 \text {, and } \lim _{t \rightarrow+\infty} \frac{f(t)}{t}=+\infty \tag{1.4}
\end{equation*}
$$

Under the above assumptions, they proved that there exists $\lambda^{*} \in(0, \infty)$ such that
(i) If $0<\lambda<\lambda^{*}$, problem (1.3) admits a minimal classical solution $u_{\lambda}$;
(ii) The family of functions $\left\{u_{\lambda}: 0<\lambda<\lambda^{*}\right\}$ is increasing in $\lambda$, and its pointwise limit $u^{*}=\lim _{\lambda \uparrow \lambda^{*}}$ is a weak solution of (1.3) with $\lambda=\lambda^{*}$;
(iii) For $\lambda>\lambda^{*}$, problem (1.3) admits no classical solution.

# https://daneshyari.com/en/article/4614712 

Download Persian Version:

## https://daneshyari.com/article/4614712

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: gylvmaths@henu.edu.cn (G. Lv), duan@iit.edu (J. Duan), taoismnature@hust.edu.cn (J. He).
    http://dx.doi.org/10.1016/j.jmaa.2015.07.003
    0022-247X/© 2015 Elsevier Inc. All rights reserved.

