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This paper studies the stability of periodic solutions of distributed parameters 
biochemical system with periodic input Sin(t). We prove that if Sin(t) is periodic 
then the system has a periodic solution that is input to state stable when small 
perturbations are acting on the input concentration Sin(t).
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1. Introduction

The aim of this work is to prove the existence and stability of periodic solutions of a model describing a 
biochemical reactor with periodic input Sin(t). Periodic solutions arise in many bioengineering systems be-
cause of the often periodically time varying environments. In the last decades, the existence of such periodic 
solutions has been extensively investigated by many authors to understand oscillations observed in many 
chemostat experiments (see e.g. [19,10,11,14], and references therein). The chemostat is an experimental 
device used to understand the dynamics of biological, biochemical or ecological systems and in which the 
components of the systems are only time varying. Parallel to chemostat systems, the dynamical analysis 
and control of tubular (bio)chemical reactors have also motivated many research activities over the last 
decades (see e.g. [1–4,7,18], etc. and references therein). These studies are mostly focused on existence and 
asymptotic behavior of state trajectories, control and observability of the systems, in which a linearization 
of the system is the underlying tool. Following the ideas in the theoretical and experimental results in 
chemostat studies, recently Drame et al. [5,6] studied the existence of periodic and almost periodic solutions 
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of distributed parameters biochemical systems. It was shown that periodic solutions of a time delay system 
exist with a constant input Sin in [5], and with time varying input Sin(·) in [6], but both studies lack a 
stability analysis. Pilyugin and Waltman [16] studied a reaction–diffusion system describing an unstirred 
chemostat and prove the existence of periodic solutions based on a system reduction technique. However, 
the system in [16] is monotone and the method cannot be applied to the systems considered here or in [5,6].

It is natural to assume in a tubular biochemical reactor’s model that the input nutrient concentration 
Sin(t) is time dependent and periodic in the time t. The dynamical system under consideration in the 
current paper uses this assumption in a model involving a diffusion-transport partial differential equation 
coupled with a nonlinear ordinary differential equation. The coupling term involves both the biomass and 
substrate. The justification of the model is derived from work performed on anaerobic digestion in the pilot 
fixed bed reactor of the LBE-INRA in Narbonne (France) and is validated on the process (see [1,17]). Our 
main result involves a Lyapunov functional technique that analyzes and proves that if we replace Sin(t) by 
Sin(t) + a(t), where a(t) is a small perturbation, then this will have small effect on the periodic solution. 
The paper is organized as follows. The model, background, and preliminary results are given in Section 2. 
Section 3 introduces an auxiliary system and gives an existence result for a solution. Section 4 is devoted 
to the existence problem of a periodic solution of the main system under study. The main new results are 
contained in Section 5 where a stability analysis is presented.

2. Notation, the model and preliminary results

2.1. Notation and Schauder’s Fixed Point Theorem

The notation is standard and will be simplified whenever no confusion can arise from the context. The 
Euclidean norm of vectors of any dimension is denoted | · |. For a function ϕ ∈ L2(0, 1), the L2 norm is 
‖ϕ‖L2 =

√∫ 1
0 |ϕ(m)|2dm. We let Z = C[0, 1] × C[0, 1].

The set of modulus functions is denoted by K∞ and consists of all continuous functions γ : [0, ∞) → [0, ∞)
satisfying (i) γ(0) = 0, (ii) γ(.) is strictly increasing, and (iii) γ(.) is unbounded.

We recall the Schauder’s Fixed Point Theorem [12, p. 126], which will be later invoked to provide existence 
result. Let X be Banach space and D ⊆ X . Recall that a completely continuous function A(.) : D → X is a 
continuous function that maps bounded sets into relatively compact ones.

Theorem 2.1 (Schauder’s Theorem). Suppose that D is a closed bounded convex subset of a Banach space 
X and A(.) : D → X is a completely continuous function with A(D) ⊆ D. Then there is a point z ∈ D such 
that Az = z.

2.2. The model

Applying the mass balance principles to the limiting substrate concentration S(t, z) and the living biomass 
concentration X(t, z) leads to the following dynamical system:

∂S

∂t
(t, z) = d

∂2S

∂z2 (t, z) − q
∂S

∂z
(t, z) − kμ(S(t, z), X(t, z))X(t, z) ,

∂X

∂t
(t, z) = −kdX(t, z) + μ(S(t, z), X(t, z))X(t, z) , (2.1)

with the boundary conditions

d
∂S

∂z
(t, 0) − qS(t, 0) + qSin(t) = 0 and ∂S

∂z
(t, L) = 0 for all t ≥ 0 (2.2)
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