Evaluation of some integrals relevant to multiple scattering by randomly distributed obstacles

Gerhard Kristensson
Department of Electrical and Information Technology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

A R T I C L E I N F O

Article history:

Received 26 May 2015
Available online 2 July 2015
Submitted by B. Kaltenbacher

Keywords:

Erdélyi operator
Spherical waves
Scattering by random objects
Pair correlation function

Abstract

This paper analyzes and solves an integral and its indefinite Fourier transform of importance in multiple scattering problems of randomly distributed scatterers. The integrand contains a radiating spherical wave, and the two-dimensional domain of integration excludes a circular region of varying size. A solution of the integral in terms of radiating spherical waves is demonstrated. The method employs the Erdélyi operators, which leads to a recursion relation. This recursion relation is solved in terms of a finite sum of radiating spherical waves. The solution of the indefinite Fourier transform of the integral contains the indefinite Fourier transforms of the Legendre polynomials, which are solved by a closed formula.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the electromagnetic scattering problem by randomly distributed objects has been successfully formulated and solved. Some important contributions in the field are found in e.g. $[3-8,10,11,13$, 16-19,21-25]. These references refer to various aspects of the topic, and more references can be found in these papers. The topic is also treated in several textbooks, see e.g. [12,14,20], which can be consulted for a comprehensive treatment of the various multiple scattering theories.

Of critical importance for the solution of a specific scattering problem with hole-corrections (HC) is an integral of the form $[9,18,20]$

$$
\begin{equation*}
I_{l}(z)=\frac{k^{2}}{2 \pi} \iint_{\mathbb{R}^{2}} H(r-a) h_{l}^{(1)}(k r) P_{l}(\cos \theta) \mathrm{d} x \mathrm{~d} y, \quad z \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $H(x)$ denotes the Heaviside function, and $h_{l}^{(1)}(k r)$ and $P_{l}(x)$ denote the spherical Hankel function and the Legendre polynomial of order l, respectively. We have also adopted the spherical coordinates,

[^0]

Fig. 1. The geometry of the integration domain - the plane $z=$ constant (dotted line), and the exclusion volume - the sphere of radius a located at the origin (in gray).
$r=\sqrt{x^{2}+y^{2}+z^{2}}$ and $\theta(\cos \theta=z / r)$, and the wave number k. The domain of integration is the plane $z=$ constant, excluding the sphere of radius $a>0$ at the center, see Fig. 1. For a given value of $|z| \leq a$, the radius of the excluded circle is $\sqrt{a^{2}-z^{2}}$. For $|z| \geq a$ the integration is the entire $x-y$ plane. This integral, for a given $a>0$, is a non-trivial function of $z \in \mathbb{R}$. To ensure convergence of the integral at infinity, we assume the wave number k has an arbitrarily small imaginary part. The explicit solution of this integral, as a function of z and the index $l=0,1,2, \ldots$, is the aim of this paper, and the goal is to express the solutions in a form that is attractive from a numerical computation point of view.

The solution of the integral $I_{l}(z)$ is developed in Sections 2 and 3. The indefinite Fourier transform of $I_{l}(z)$ is also essential for a successful solution of the multiple scattering problem with hole-corrections, and this analysis is found in Sections 4 and 5. The paper is concluded with a short summary in Section 6.

2. The integral $I_{l}(z)$

Rewrite the integral $I_{l}(z)$ in (1) in cylindrical coordinates and perform the integration in the azimuthal angle. We get from (1)

$$
\begin{equation*}
I_{l}(z)=k^{2} \int_{h(z)}^{\infty} h_{l}^{(1)}\left(k \sqrt{\rho^{2}+z^{2}}\right) P_{l}\left(z / \sqrt{\rho^{2}+z^{2}}\right) \rho \mathrm{d} \rho, \quad z \in \mathbb{R} \tag{2}
\end{equation*}
$$

where

$$
h(z)= \begin{cases}\sqrt{a^{2}-z^{2}}, & -a \leq z \leq a \\ 0, & |z|>a\end{cases}
$$

From the parity of the Legendre polynomials, $P_{l}(-x)=(-1)^{l} P_{l}(x)$, we see that also $I_{l}(-z)=(-1)^{l} I_{l}(z)$. Thus, it suffices to evaluate the integral for $z>0$. In particular, $I_{l}(0)=0$, if l is an odd integer. From (2) we also easily compute the integral for $l=0$, viz.

$$
I_{0}(z)= \begin{cases}\mathrm{e}^{-\mathrm{i} k z}, & z \leq-a \\ \mathrm{i} k a h_{0}^{(1)}(k a)=\mathrm{e}^{\mathrm{i} k a}, & -a \leq z \leq a \\ \mathrm{e}^{\mathrm{i} k z}, & z \geq a\end{cases}
$$

2.1. Solution outside the interval $[-a, a]$

In the interval $z>a$, the integral is evaluated with the use of the transformation of the outgoing scalar spherical wave in terms of planar waves [2, p. 180], i.e., for a general value of $z \neq 0$

https://daneshyari.com/en/article/4614743

Download Persian Version:
https://daneshyari.com/article/4614743

Daneshyari.com

[^0]: E-mail address: Gerhard.Kristensson@eit.lth.se.
 http://dx.doi.org/10.1016/j.jmaa.2015.06.047
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

