

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Minimization problem related to a Lyapunov inequality

Masato Hashizume

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Suqimoto Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan

ARTICLE INFO

Article history: Received 7 January 2015 Available online 23 June 2015 Submitted by Y. Yamada

Keywords:
Critical exponent
Lyapunov inequality
Minimization problem
Neumann boundary value problem
Sign-changing solution

ABSTRACT

In this study, we consider the following minimization problem on a bounded smooth domain Ω in \mathbb{R}^N :

$$S' := \inf \left\{ \frac{\|\nabla u\|_2^2}{\|u\|_{2^*}^2} \; \middle| \; u \in H^1(\Omega) \setminus \{0\} \, , \int\limits_{\Omega} |u|^{2^* - 2} u = 0 \right\}.$$

This minimization problem plays a crucial role in the study of L^p -Lyapunov type inequalities $(1 \leq p \leq \infty)$ for linear partial differential equations with Neumann boundary conditions. In this study, we prove the existence of minimizers of S'. As a consequence, we prove the L^p -Lyapunov type inequality in the critical case, which was left open in [4].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 3$, with a smooth boundary. Let $2^* := 2N/(N-2)$ denote the critical Sobolev exponent. In this study, we consider a minimization problem with a sign-changing condition:

$$S' := \inf \left\{ \frac{\|\nabla u\|_2^2}{\|u\|_{2^*}^2} \mid u \in H^1(\Omega) \setminus \{0\}, \int_{\Omega} |u|^{2^* - 2} u = 0 \right\},$$

where $||u||_s = (\int_{\Omega} |u|^s)^{1/s}$ is the usual $L^s(\Omega)$ -norm. For $1 \leq q < 2^*$, the Sobolev embedding $H^1(\Omega) \hookrightarrow L^q(\Omega)$ is compact. In addition, it is well known that the embedding $H^1(\Omega) \hookrightarrow L^{2^*}(\Omega)$ is non-compact, and thus the existence of extremals of S' is nontrivial. A minimization problem involving the critical Sobolev exponent

E-mail address: m13sa60a23@ex.media.osaka-cu.ac.jp.

under a sign-changing condition was studied by Girão and Weth [7], where they also studied the minimization problem:

$$\Lambda_{2^*} := \inf \left\{ \frac{\|\nabla u\|_2^2}{\|u\|_{2^*}^2} \mid u \in H^1(\Omega) \setminus \{0\}, \int_{\Omega} u = 0 \right\}.$$

They proved that an extremal of Λ_{2^*} exists for $N \geq 3$. Furthermore, it was proved that the minimizers belong to $C^{3,\alpha}(\overline{\Omega})$ and if Ω is an open unit ball, then the extremal functions are foliated Schwarz symmetric. In contrast to the problem Λ_{2^*} , the set of admissible functions for S' is not a linear space, which causes some technical difficulties.

The existence of minimizers of S' is related to an L^p -Lyapunov type inequality [4], as follows. Assume that $N \geq 2$ and $\Omega \subset \mathbb{R}^N$ is smooth bounded domain. Consider the linear problem

$$\begin{cases} -\Delta u(x) = a(x)u(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial\Omega, \end{cases}$$
 (1)

where it is assumed that the function $a:\Omega\to\mathbb{R}$ belongs to

$$\Lambda := \left\{ a \in L^{\frac{N}{2}}(\Omega) \setminus \{0\} \mid \int_{\Omega} a(x) dx \ge 0 \text{ and } (1) \text{ has nontrivial solutions} \right\}$$

if $N \geq 3$, and

$$\Lambda:=\left\{a\;\middle|\;a\in L^r(\Omega)\setminus\{0\}\;\;\text{for some}\;r\in(1,+\infty],\;\int\limits_\Omega a(x)dx\geq0,\right.$$
 and (1) has nontrivial solutions
$$\right\}\quad\text{if }N=2.$$

For $1 \leq p \leq \infty$, define the value β_p as

$$\beta_p = \inf \left\{ \|a^+\|_{L^p(\Omega)} \mid a \in \Lambda \cap L^p(\Omega) \right\}.$$

The eigenvalues of the eigenvalue problem

$$\begin{cases} -\Delta u(x) = \lambda u(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial \Omega \end{cases}$$

belong to Λ , so Λ is not empty and thus Λ is well defined. By the term L^p -Lyapunov inequality, we refer to the problem of investigating the attainability of β_p , as well as determining the value of β_p . For this problem, Cañada, Montero, and Villegas [4] proved the following result.

Theorem 1.1. (See [4].)

- (i) If N=2 and p=1, or $N\geq 3$ and $1\leq p<\frac{N}{2}$, then $\beta_p=0$ and β_p is not attained.
- (ii) If $\frac{N}{2} , then <math>\beta_p$ is attained.
- (iii) If $N \geq 3$ and $p = \frac{N}{2}$, then $\beta_{\frac{N}{2}} > 0$.

For case (iii) (we refer to this as the critical case), the attainability of $\beta_{\frac{N}{2}}$ has not been studied previously. Thus, in this study, we prove the attainability of $\beta_{\frac{N}{2}}$. The main result of this study is as follows.

Download English Version:

https://daneshyari.com/en/article/4614754

Download Persian Version:

https://daneshyari.com/article/4614754

<u>Daneshyari.com</u>