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We give asymptotic spectral results for Gram matrices of the form n−1XnXT
n where 

the entries of Xn are dependent across both rows and columns. More precisely, 
they consist of short or long range dependent random variables having moments of 
second order and that are functionals of an absolutely regular sequence. We also 
give a concentration inequality of the Stieltjes transform and we prove that, under 
an arithmetical decay condition on the β-mixing coefficients, it is almost surely 
concentrated around its expectation. Applications to examples of positive recurrent 
Markov chains and dynamical systems are also given.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For a random matrix Xn ∈ R
N×n, the study of the asymptotic behavior of the eigenvalues of the N ×N

Gram matrix n−1XnX T
n gained interest as it is employed in many applications in statistics, signal processing, 

quantum physics, finance, etc. In order to describe the distribution of the eigenvalues, it is convenient to 
introduce the empirical spectral measure defined by μn−1XnXT

n
= N−1 ∑N

k=1 δλk
, where λ1, . . . , λN are the 

eigenvalues of n−1XnX T
n . This type of study was actively developed after the pioneering work of Marc̆enko 

and Pastur [11], who proved that under the assumption limn→+∞ N/n = c ∈ (0, +∞), the empirical spectral 
distribution of large dimensional Gram matrices with i.i.d. centered entries having finite variance converges 
almost surely to a non-random distribution. The limiting spectral distribution (LSD) obtained, i.e. the 
Marc̆enko–Pastur distribution, is given explicitly in terms of c and depends on the distribution of the entries 
of Xn only through their common variance. The original Marc̆enko–Pastur theorem is stated for random 
variables having moments of fourth order; for the proof with second moments only, we refer to Yin [18].

Since then, a large amount of study has been done aiming to relax the independence structure between 
the entries of Xn. For example, Bai and Zhou [2] treated the case where the columns of Xn are independent 
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with their coordinates having a very general dependence structure and moments of fourth order. Recently, 
Banna and Merlevède [3] extended along another direction the Marc̆enko–Pastur theorem to a large class of 
weakly dependent sequences of real random variables having moments of second order. Letting (Xk)k∈Z be 
a stationary process of the form Xk = g(· · · , εk−1, εk, εk+1, . . .), where the εk’s are i.i.d. real-valued random 
variables and g : RZ → R is a measurable function, they consider the N × N sample covariance matrix 
An = 1

n

∑n
k=1 XkXT

k with the Xk’s being independent copies of the vector X = (X1, . . . , XN )T . Assuming 
that X0 has just a moment of second order, then provided that limn→∞ N/n = c ∈ (0, ∞), they prove, 
under a mild dependence condition, that almost surely, μAn

converges weakly to a non-random probability 
measure μ whose Stieltjes transform satisfies an integral equation depending on c and on the spectral density 
of the underlying stationary process (Xk)k∈Z. In a recent paper, Merlevède and Peligrad [12] extend this 
result to stationary sequences satisfying mild regularity conditions and prove that the empirical spectral 
measure of a sample covariance matrix generated by independent copies of a stationary regular sequence 
has a limiting distribution depending only on the spectral density of the sequence.

In the above mentioned model, the random vector X = (X1, . . . , XN )T can be viewed as an N -dimensional 
process repeated independently n times to obtain the Xk’s. However, in practice it is not always possible 
to observe a high dimensional process several times. In the case where only one observation of length Nn

can be recorded, it seems reasonable to partition it into n dependent observations of length N , and to treat 
them as n dependent observations. Up to our knowledge this was first done by Pfaffel and Schlemm [13]
who showed that this approach is valid and leads to the correct asymptotic eigenvalue distribution of the 
sample covariance matrix if the components of the underlying process are modeled as short memory linear 
filters of independent random variables. They consider Gram matrices having the same form as in (2.3)
and associated with a stationary linear process (Xk)k∈Z with independent innovations having finite fourth 
moments and such that the coefficients decay with an arithmetical rate, and they derive its LSD.

In this work, we study the same model of random matrices as in [13] but considering the case where the 
entries come from a non-causal stationary process (Xk)k∈Z of the form Xk = g(· · · , εk−1, εk, εk+1, . . .) where 
(εk)k∈Z is an absolutely regular sequence and g : RZ → R is a measurable function such that Xk is a proper 
centered random variable having finite moments of second order. We prove in Theorem 2.1 a concentration 
inequality for the Stieltjes transform which allows us to prove that, under an arithmetical decay condition 
on the β-mixing coefficients, the Stieltjes transform is concentrated almost surely around its expectation 
as n tends to infinity. Having reduced the study to the expectation of the Stieltjes transform, it is enough 
to show that the latter converges to the Stieltjes transform of a non-random probability measure. This can 
be achieved by approximating it by the expectation of the Stieltjes transform of a Gaussian matrix having 
a close covariance structure as shown in Theorem 2.2. Finally, provided that the spectral density of (Xk)k
exists, we prove in Theorem 2.3 that almost surely, μBn

converges weakly to the same non-random limiting 
probability measure μ obtained in the cases mentioned before.

We recall now that the absolutely regular (β-mixing) coefficient between two σ-algebras A and B is 
defined by

β(A,B) = 1
2 sup

{∑
i∈I

∑
j∈J

∣∣P(Ai ∩Bj) − P(Ai)P(Bj)
∣∣},

where the supremum is taken over all finite partitions (Ai)i∈I and (Bj)j∈J that are respectively A and B
measurable (see Rozanov and Volkonskii [16]). The coefficients (βn)n�0 of a sequence (εi)i∈Z are defined by

β0 = 1 and βn = sup
k∈Z

β
(
σ(ε�, � � k), (ε�+n, � � k)

)
for n � 1. (1.1)

Moreover, (εi)i∈Z is said to be absolutely regular or β-mixing if βn → 0 as n → ∞.
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