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This paper deals with a fully nonlinear degenerate parabolic system with natural 
(critical) growths and under non-linear boundary conditions. Such problems arise 
from the heat and water flow through a partially saturated fractured rock mass and 
structured porous media. Existence of a global weak solution of the problem (on an 
arbitrary interval of time) is proved by means of semidiscretization in time, deriving 
suitable a-priori estimates based on W 1,p-regularity of the approximate solution and 
by passing to the limit from discrete approximations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we deal with mathematical analysis of fully nonlinear degenerate parabolic system modeling 
coupled heat transport and preferential movement of water in dual structured porous media. Variably-
saturated porous medium is treated as a multi-phase material. At the microscale the individual phases can 
be clearly identified, however, at the macroscale, where measurements are usually carried out, the only ob-
servable quantities correspond to the effective behaviour. Because the detailed description of the geometry 
of the porous space is seldom known in practice, the macroscale-level equations are sought as suitable av-
erages of the microscale balance law, for example in the framework of the hybrid mixture theory, originally 
proposed in [18–20]. In this context, the porous medium is considered as continuum of independent overlap-
ping phases. For each constituent its conservation equation is derived according to principles of continuum 
mechanics.
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1.1. Conservation of mass

In mixture theory, the derivation of the mass balance equation is based on mass conservation of α-phase 
inside the spatial domain Ω of interest. A general form of a mass balance law reads [34]

d
dt

∫
B

�α dx +
∫
∂B

�αvα · n dS =
∫
B

sα dx (1.1)

to be satisfied for any regular subdomain B ⊂ B ⊂ Ω. Here, �α = Θα�α represents the phase averaged 
density, Θα [-] is the volume fraction of the α-phase, �α [kg m−3] stands for the intrinsic phase averaged 
density and sα [kg m−3 s−1] is a production term. Further, vα [m s−1] is the velocity of α-phase and n
represents an outward unit normal vector to the boundary ∂B. Applying the divergence theorem to (1.1)
and owing to the arbitrariness of the domain B one arrives at the local form of the balance law

∂(Θα�α)
∂t

+ ∇ · (Θα�αvα) = sα. (1.2)

1.2. Conservation of heat energy

The balance of heat energy for the α-phase can be written as

d
dt

∫
B

eα dx +
∫
∂B

(qT )α · n dS =
∫
B

Qα dx +
∫
B

Eα dx−
∫
B

Hαsα dx, (1.3)

where eα [J m−3] is the total internal energy of the α-phase in B, (qT )α [W m−2] is the heat flux, Qα stands 
for the volumetric heat source, Eα represents the term expressing energy exchange with the other phases 
and the symbol Hα [J kg−1] stands for the specific enthalpy of the α-phase. Here we assume

eα = �αCαTα, (1.4)

where Tα [K] is the absolute temperature and Cα [J kg−1 K−1] represents the specific isobaric heat of the 
α-phase. Further, the heat flux vector (qT )α includes the conductive flux qα and convection

(qT )α = qα + �αCαTαvα. (1.5)

Hence, applying the divergence theorem to (1.3) and using (1.4) and (1.5) one obtains the heat energy 
conservation equation for the α-phase in the differential form

∂t (�αCαTα) + ∇ · (qα + �αCαTαvα) = Qα + Eα −Hαsα. (1.6)

1.3. Single porosity model

In the simplest case, consider the flow of a single homogeneous fluid through a porous solid, such as 
variably saturated water flow in soils. The mass conservation equation for the α-phase (1.2) can be partic-
ularized to both the water phase (α = w) and the solid phase (α = s). The mass conservation equations for 
the water and solid phases, respectively, become (neglecting source terms)

∂(Θw�w)
∂t

+ ∇ · (Θw�wvw) = 0 (1.7)
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