

ELSEVIER

On the extremal total reciprocal edge-eccentricity of trees ${ }^{\text {T }}$

CrossMark

Shuchao Li, Lifang Zhao*
Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China

A R T I C L E IN F O

Article history:
Received 2 February 2015
Available online 7 August 2015
Submitted by S.A. Fulling

Keywords:

Edge-eccentricity
Reciprocal edge-eccentricity
Matching number
Diameter
Connectivity

Abstract

The total reciprocal edge-eccentricity is a novel graph invariant with vast potential in structure activity/property relationships. This graph invariant displays high discriminating power with respect to both biological activity and physical properties. If $G=\left(V_{G}, E_{G}\right)$ is a simple connected graph, then the total reciprocal edgeeccentricity (REE) of G is defined as $\xi^{e e}(G)=\sum_{u v \in E_{G}}\left(1 / \varepsilon_{G}(u)+1 / \varepsilon_{G}(v)\right.$), where $\varepsilon_{G}(v)$ is the eccentricity of the vertex v. In this paper we first introduced four edge-grafting transformations to study the mathematical properties of the reciprocal edge-eccentricity of G. Using these elegant mathematical properties, we characterize the extremal graphs among n-vertex trees with given graphic parameters, such as pendants, matching number, domination number, diameter, vertex bipartition, et al. Some sharp bounds on the reciprocal edge-eccentricity of trees are determined.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, we only consider simple connected graph $G=\left(V_{G}, E_{G}\right)$ on n vertices and m edges (so $n=\left|V_{G}\right|$ is its order, and $m=\left|E_{G}\right|$ is its size). The distance between two vertices u, v of G, written $d_{G}(u, v)$, is the length of a shortest $u-v$ path in G. The eccentricity $\varepsilon_{G}(v)$ of a vertex v is the distance between v and a furthest vertex from v in G. For any edge $e=u v \in E_{G}$, we may define edge-eccentricity of e as ec $(e)=\varepsilon_{G}(u)+\varepsilon_{G}(v)$; whereas its reciprocal edge-eccentricity is defined as ree $(e)=\frac{1}{\varepsilon_{G}(u)}+\frac{1}{\varepsilon_{G}(v)}$. When the graph is clear from the context, we will omit the subscript G from the notation. We follow the notation and terminology in [3] except if otherwise stated.

Molecular descriptors play an important role in mathematical chemistry, especially in the QSPR and QSAR modeling [1]. Among them, a special place is reserved for the so-called topological indices, or graph invariant. The well-studied distance-based graph invariant probably is the Wiener index [35], one of the most well used chemical indices that correlate a chemical compound's structure with the compound's physical-

[^0]chemical properties. The Wiener index, introduced in 1947, is defined as the sum of distances between all pairs of vertices, namely that
$$
W(G)=\sum_{\{u, v\} \subseteq V_{G}} d_{G}(u, v) .
$$

For more results on Wiener index one may be referred to those in $[10,23,24,32]$ and the references cited therein.

Another distance-based graph invariant, defined $[18,31]$ in a fully analogous manner to Wiener index, is the Harary index, which is equal to the sum of reciprocal distances over all unordered vertex pairs in G, that is,

$$
H(G)=\sum_{\{u, v\} \subseteq V_{G}} \frac{1}{d_{G}(u, v)} .
$$

For more results on Harary index, one may be referred to [5,17,21,27,31,36].
More recently, the distance-based graph invariants involving eccentricity have attracted much attention. These graph invariants mainly include the average eccentricity [4], the superaugmented eccentric connectivity index [7], the reformed eccentric connectivity index [20], the eccentric distance sum [11], augmented eccentric connectivity index [33], etc. In particular, the average eccentricity [4,6,14,15], and the eccentric distance sum [10] of the graph G, written by $\xi(G)$ and $\xi^{d}(G)$ are defined, respectively, as

$$
\xi(G)=\frac{1}{n} \sum_{u \in V_{G}} \varepsilon_{G}(u), \quad \xi^{d}(G)=\sum_{\{u, v\} \subseteq V_{G}}\left(\varepsilon_{G}(u)+\varepsilon_{G}(v)\right) d_{G}(u, v) .
$$

Recently, mathematical properties of the eccentric distance sum of graphs have been studied. Mukungunugwa and Mukwembi [30] obtained the asymptotically sharp upper bounds on $\xi^{d}(G)$ with respect to the order and minimal degree of G. Geng, Zhang and one of the present authors [8] studied the relationship between ξ^{d} and some other parameters, such as domination number, pendants and so on of trees. For more results on $\xi^{d}(G)$, one may be referred to $[16,25,26,28]$ and the references therein.

The total edge-eccentricity of a graph G is defined as

$$
\xi^{c}(G)=\sum_{e=u v \in E_{G}}\left(\varepsilon_{G}(u)+\varepsilon_{G}(v)\right) .
$$

The total edge-eccentricity of the graph G can be defined alternatively as

$$
\xi^{c}(G)=\sum_{u \in V_{G}} \varepsilon_{G}(u) d_{G}(u) .
$$

This graph invariant is just the eccentric connectivity index, which is a distance-based molecular structure descriptor, proposed by Sharma, Goswami and Madan [34] in 1997. The index $\xi^{c}(G)$ was successfully used for mathematical models of biological activities of diverse nature [7,9]. For the study of its mathematical properties one may be referred to $[12,15,29]$ and the references therein.

Bearing in mind that the relation between Wiener index and Harary index, we study here a novel graph invariant named the total reciprocal edge-eccentricity (REE), i.e.,

$$
\xi^{e e}(G)=\sum_{e=u v \in E_{G}}\left(\frac{1}{\varepsilon_{G}(u)}+\frac{1}{\varepsilon_{G}(v)}\right)
$$

which can be defined alternatively as

$$
\xi^{e e}(G)=\sum_{u \in V_{G}} \frac{d_{G}(u)}{\varepsilon_{G}(u)}
$$

https://daneshyari.com/en/article/4614798

Download Persian Version:
https://daneshyari.com/article/4614798

Daneshyari.com

[^0]: करे Financially supported by the National Natural Science Foundation of China (Grant Nos. 11271149, 11371162), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0817) and the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CCNU13F020).

 * Corresponding author.

 E-mail addresses: lscmath@mail.ccnu.edu.cn (S. Li), zhaolfmath@163.com (L. Zhao).

