

Caffarelli-Kohn-Nirenberg type equations of fourth order with the critical exponent and Rellich potential

Mousomi Bhakta
Department of Mathematics, Indian Institute of Science Education and Research, Pune, India

A R T I C L E I N F O

Article history:

Received 20 March 2015
Available online 29 July 2015
Submitted by H.-M. Yin
Keywords:
Caffarelli-Kohn-Nirenberg type
equations
Contractible domain
Nonexistence
Nontrivial topology
Palais-Smale decomposition
Pohozaev identity

A B S T R A C T

We study the existence/nonexistence of positive solutions of

$$
\Delta^{2} u-\mu \frac{u}{|x|^{4}}=\frac{|u|^{q_{\beta}-2} u}{|x|^{\beta}} \quad \text { in } \Omega
$$

where Ω is a bounded domain and $N \geq 5, q_{\beta}=\frac{2(N-\beta)}{N-4}, 0 \leq \beta<4$ and $0 \leq \mu<$ $\left(\frac{N(N-4)}{4}\right)^{2}$. We prove the nonexistence result when Ω is an open subset of \mathbb{R}^{N}, which is star-shaped with respect to the origin. We also study the existence of positive solutions when Ω is a smooth bounded domain with a nontrivial topology and $\beta=0$, $\mu \in\left(0, \mu_{0}\right)$, for certain $\mu_{0}<\left(\frac{N(N-4)}{4}\right)^{2}$ and $N \geq 8$. Different behaviors are obtained for Palais-Smale sequences depending on whether $\beta=0$ or $\beta>0$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this study, we consider the singular semilinear fourth order elliptic problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u-\mu \frac{u}{|x|^{4}}=\frac{|u|^{q_{\beta}-2} u}{|x|^{\beta}} \quad \text { in } \Omega \tag{1.1}\\
u \in H_{0}^{2}(\Omega) \\
u>0 \quad \text { in } \Omega
\end{array}\right.
$$

where $\Delta^{2} u=\Delta(\Delta u), \Omega$ is a smooth bounded domain and

$$
\begin{equation*}
N \geq 5, \quad q_{\beta}=\frac{2(N-\beta)}{N-4}, \quad 0 \leq \beta<4 \quad \text { and } \quad 0 \leq \mu<\bar{\mu}=\left(\frac{N(N-4)}{4}\right)^{2} \tag{1.2}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2015.07.042
0022-247X/© 2015 Elsevier Inc. All rights reserved.

Semilinear elliptic equations with a biharmonic operator arise in continuum mechanics, biophysics, and differential geometry, particularly in the modeling of thin elastic plates and clamped plates, as well as in the study of the Paneitz-Branson equation and the Willmore equation (see [13] and the references therein for more details).

Definition 1.1. We say that $u \in H_{0}^{2}(\Omega)$ is a solution to (1.1) if $u>0$ in Ω and satisfies

$$
\int_{\Omega}\left[\Delta u \Delta \phi-\mu \frac{u \phi}{|x|^{4}}\right] d x=\int_{\Omega} \frac{|u|^{q_{\beta}-2} u \phi}{|x|^{\beta}} d x \quad \forall \phi \in H_{0}^{2}(\Omega) .
$$

Equivalently, u is a critical point of the functional

$$
\begin{equation*}
I_{\mu}(u)=\frac{1}{2} \int_{\Omega}\left[|\Delta u|^{2}-\mu \frac{|u|^{2}}{|x|^{4}}\right] d x-\frac{1}{q_{\beta}} \int_{\Omega} \frac{|u|^{q_{\beta}}}{|x|^{\beta}} d x \quad u \in H_{0}^{2}(\Omega) . \tag{1.3}
\end{equation*}
$$

I_{μ} is a well defined C^{1} functional in $H_{0}^{2}(\Omega)$ due to the following Rellich inequality [19,18]:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x \geq \bar{\mu} \int_{\mathbb{R}^{N}}|x|^{-4}|u|^{2} d x \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{1.4}
\end{equation*}
$$

and the Caffarelli-Kohn-Nirenberg (CKN) inequality of fourth order [3,6,8]:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x \geq C\left(\int_{\mathbb{R}^{N}}|x|^{-\beta}|u|^{q_{\beta}} d x\right)^{2 / q_{\beta}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{1.5}
\end{equation*}
$$

where $C=C(N, \beta)>0$. The Rellich inequality is a generalization of the following Hardy inequality:

$$
\begin{equation*}
\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{|u|^{2}}{|x|^{2}} d x \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \quad \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{1.6}
\end{equation*}
$$

Remark: It is well known that when Ω is a smooth bounded domain, the Hardy inequality holds for every $u \in H_{0}^{1}(\Omega)$, but the best constant $\left(\frac{N-2}{2}\right)^{2}$ is never achieved.

From previous studies, we know that the usual norm in $H^{2}(\Omega)$ is $\left(\int_{\Omega} \sum_{0 \leq|\alpha| \leq 2}\left|D^{\alpha} u\right|^{2} d x\right)^{\frac{1}{2}}$. From interpolation theory, we can neglect the intermediate derivates and we find that

$$
\begin{equation*}
\|u\|_{H^{2}(\Omega)}=\left(\int_{\Omega}|u|^{2} d x+\int_{\Omega}\left|D^{2} u\right|^{2} d x\right)^{\frac{1}{2}} \tag{1.7}
\end{equation*}
$$

defines a norm that is equivalent to the usual norm in $H^{2}(\Omega)$ (see [1]). As Ω is a smooth bounded domain and $H_{0}^{2}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ w.r.t. the norm in $H^{2}(\Omega)$, then by invoking [13, Theorem 2.2] we find that

https://daneshyari.com/en/article/4614802

Download Persian Version:
https://daneshyari.com/article/4614802

Daneshyari.com

[^0]: E-mail address: mousomi@iiserpune.ac.in.

