Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A note on a new ideal

Adam Kwela¹

Institute of Mathematics, University of Gdańsk, Wita Stwosza 58, 80-952 Gdańsk, Poland

ARTICLE INFO

Article history: Received 26 March 2014 Available online 22 May 2015 Submitted by M. Laczkovich

Keywords: Ideals Weakly Ramsey ideals Ideal convergence Infinite games Quasi-continuous functions

ABSTRACT

In this paper we study a new ideal \mathcal{WR} . The main result is the following: an ideal is not weakly Ramsey if and only if it is above \mathcal{WR} in the Katětov order. Weak Ramseyness was introduced by Laflamme in order to characterize winning strategies in a certain game. We apply result of Natkaniec and Szuca to conclude that \mathcal{WR} is critical for ideal convergence of sequences of quasi-continuous functions. We study further combinatorial properties of \mathcal{WR} and weak Ramseyness. Answering a question of Filipów et al. we show that \mathcal{WR} is not 2-Ramsey, but every ideal on ω isomorphic to \mathcal{WR} is Mon (every sequence of reals contains a monotone subsequence indexed by an \mathcal{I} -positive set).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A collection $\mathcal{I} \subset \mathcal{P}(X)$ is an *ideal on* X if it is closed under finite unions and subsets. We additionally assume that $\mathcal{P}(X)$ is not an ideal and each ideal contains $\mathbf{Fin} = [X]^{<\omega}$. In this paper X will always be a countable set. Ideal is *dense* if every infinite set contains an infinite subset belonging to the ideal. The *filter dual to the ideal* \mathcal{I} is the collection $\mathcal{I}^* = \{A \subset X : A^c \in \mathcal{I}\}$ and $\mathcal{I}^+ = \{A \subset X : A \notin \mathcal{I}\}$ is the collection of all \mathcal{I} -positive sets. If $Y \notin \mathcal{I}$, we can define the restriction of \mathcal{I} to the set Y as $\mathcal{I} \upharpoonright Y = \{A \cap Y : A \in \mathcal{I}\}$. We say that a family \mathcal{G} generates the *ideal* \mathcal{I} if

$$\mathcal{I} = \{A : \exists_{G_0, \dots, G_k \in \mathcal{G}} A \subset G_0 \cup \dots \cup G_k\}.$$

Ideals \mathcal{I} and \mathcal{J} are *isomorphic* if there is a bijection $f: \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that

$$A \in \mathcal{I} \Leftrightarrow f^{-1}[A] \in \mathcal{J}.$$

http://dx.doi.org/10.1016/j.jmaa.2015.05.042 $0022-247X/\odot$ 2015 Elsevier Inc. All rights reserved.

霐

E-mail address: Adam.Kwela@ug.edu.pl.

¹ The author was supported by the NCN (Polish National Science Centre) grant No. 2012/07/N/ST1/03205 and by WCMCS (Warsaw Center of Mathematics and Computer Science).

For simplicity we denote $\sum (i, j) = i + j$ for $(i, j) \in \omega \times \omega$. In the entire paper $\operatorname{proj}_1(\operatorname{proj}_2)$ is the projection on the first (second) coordinate, i.e., $\operatorname{proj}_i: \omega \times \omega \to \omega$ is given by $\operatorname{proj}_i(x_1, x_2) = x_i$, for i = 1, 2.

The structure of ideals on countable sets is often described in terms of orders. We say that \mathcal{I} is below \mathcal{J} in the Katětov order $(\mathcal{I} \leq_K \mathcal{J})$ if there is $f : \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that

$$A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}.$$

If f is a bijection between $\bigcup \mathcal{J}$ and $\bigcup \mathcal{I}$, we say that \mathcal{J} contains an isomorphic copy of \mathcal{I} ($\mathcal{I} \sqsubseteq \mathcal{J}$). Relations between \leq_K and \sqsubseteq were studied in detail in [2]. If \mathcal{I} is a dense ideal, then $\mathcal{I} \sqsubseteq \mathcal{J}$ if and only if there is a 1–1 function $f: \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$ (cf. [2] and [4]).

Ideals \mathcal{I} and \mathcal{J} are \sqsubseteq -equivalent, if $\mathcal{I} \sqsubseteq \mathcal{J}$ and $\mathcal{J} \sqsubseteq \mathcal{I}$. Obviously, two isomorphic ideals are \sqsubseteq -equivalent. The converse does not hold: for instance consider

$$\mathbf{Fin} \otimes \emptyset = \{A \subseteq \omega \times \omega : \{n \in \omega : A_n \neq \emptyset\} \in \mathbf{Fin}\}$$

and

$$\mathcal{P}(\omega) \oplus \mathbf{Fin} = \{A \subseteq \{0, 1\} \times \omega : \{n \in \omega : (1, n) \in A\} \in \mathbf{Fin}\}.$$

One can easily see that those ideals are \sqsubseteq -equivalent but not isomorphic.

In this paper we introduce a new ideal on $\omega \times \omega$.

Definition 1.1. \mathcal{WR} is an ideal on $\omega \times \omega$ generated by vertical lines (which we call generators of the first type) and sets G such that for every $(i, j), (k, l) \in G$ either i > k + l or k > i + j (which we call generators of the second type). Equivalently, \mathcal{WR} is generated by homogeneous subsets of the coloring $\lambda: [\omega \times \omega]^2 \to 2$ given by:

$$\lambda\left(\left\{\left(i,j\right),\left(k,l\right)\right\}\right) = \begin{cases} 0 & \text{if } k > i+j, \\ 1 & \text{if } k \le i+j \end{cases}$$

for all (i, j) below (k, l) in the lexicographical order.

The space 2^X of all functions $f: X \to 2$ is equipped with the product topology (each space $2 = \{0, 1\}$ carries the discrete topology). We treat $\mathcal{P}(X)$ as the space 2^X by identifying subsets of X with their characteristic functions. All topological and descriptive notion in the context of ideals on X will refer to this topology. A map $\phi: \mathcal{P}(X) \to [0, \infty]$ is a submeasure on X if $\phi(\emptyset) = 0$ and $\phi(A) \leq \phi(A \cup B) \leq \phi(A) + \phi(B)$, for all $A, B \subset X$. It is lower semicontinuous if additionally $\phi(A) = \lim_{n \to \infty} \phi(A \cap \{x_0, \dots, x_n\})$, where $X = \{x_0, x_1, \dots\}$ is an enumeration of the set X. Mazur proved in [23] that $\mathcal{I} \in \Sigma_2^0$ if and only if $\mathcal{I} = \mathbf{Fin}(\phi) = \{A \subset X : \phi(A) < \infty\}$ for some lower semicontinuous submeasure ϕ .

Notice that the submeasure ϕ on $\omega \times \omega$ given by

 $\phi(A) = \inf \{ |\mathcal{C}| : A \subset \bigcup \mathcal{C} \text{ and each } C \in \mathcal{C} \text{ is either a generator} \}$

of the first or of the second type of the ideal \mathcal{WR}

is lower semicontinuous and $\mathcal{WR} = \mathbf{Fin}(\phi)$. Hence \mathcal{WR} is Σ_2^0 .

We prove that \mathcal{WR} is a critical ideal for weak Ramseyness. To define the latter notion we need some additional notation. If $s \in \omega^{<\omega}$, i.e., $s = (s(0), \ldots, s(k))$ is a finite sequence of natural numbers, then by $\ln(s)$ we denote its *length*, i.e., k + 1. If $s, t \in \omega^{<\omega}$ and $\ln(s) \leq \ln(t)$, then we write $s \leq t$ if s(i) = t(i) for all

Download English Version:

https://daneshyari.com/en/article/4614834

Download Persian Version:

https://daneshyari.com/article/4614834

Daneshyari.com