Nontrivial solutions of discrete nonlinear equations with variable exponent

Mustafa Avci ${ }^{\text {a,b }}$, Alexander Pankov ${ }^{\text {a,* }}$
a Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA
b Batman University, Turkey

A R T I C L E I N F O

Article history:

Received 7 April 2015
Available online 27 May 2015
Submitted by V. Radulescu

Keywords:

Discrete $p(n)$-Laplacian equation
Ground state solution
Palais-Smale condition
Nehari manifold
Variational methods
Variable exponent sequence space

Abstract

In the present paper, we show the existence of ground state solution of a discrete $p(n)$-Laplacian type equation involving unbounded potential by using the MountainPass theorem and Nehari manifold.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study the following difference equation

$$
\begin{equation*}
-\nabla^{-}\left(\left|\nabla^{+} u_{n}\right|^{p_{n}-2} \nabla^{+} u_{n}\right)+V_{n}\left|u_{n}\right|^{q_{n}-2} u_{n}=f_{n}\left(u_{n}\right), n \in \mathbb{Z} \tag{1.1}
\end{equation*}
$$

on the integer lattice, where $\nabla^{+} u_{n}=u_{n+1}-u_{n}$ and $\nabla^{-} u_{n}=u_{n}-u_{n-1}$ are the forward and backward difference operators, respectively; $V_{n}, n \in \mathbb{Z}$, is a sequence of real numbers, and $f_{n}(t): \mathbb{R} \rightarrow \mathbb{R}, n \in \mathbb{Z}$, is a continuous function. We impose the following boundary condition at infinity

$$
\begin{equation*}
\lim _{|n| \rightarrow \infty} u_{n}=0, \tag{1.2}
\end{equation*}
$$

i.e., we are looking for homoclinic solutions.

Equation (1.1) is the discrete counterpart of the following nonlinear differential equation

$$
\begin{equation*}
-\left(\left|u^{\prime}\right|^{p(x)-2} u^{\prime}\right)^{\prime}+V(x)|u|^{q(x)-2} u_{n}=f(x, u) \tag{1.3}
\end{equation*}
$$

[^0]Equations of the form (1.3), as well as their multi-dimensional versions, appear in many applications, such as fluid dynamics and nonlinear elasticity, to name a few (see, e.g., $[2,18]$ and references therein). In the case when $p(x)=q(x)=2$, (1.3) becomes the stationary nonlinear Schrödinger equation (NLS). It has an enormous number of applications, for instance, in nonlinear optics [10] and condensed matter physics [8].

As in the case of equation (1.3), equation (1.1) reduces to the stationary discrete nonlinear Schrödinger equation (DNLS) when $p_{n}=q_{n}=2$. As its continuous counterpart, DNLS has many applications in various areas of physics (see, e.g., $[3,4,7]$). On the other hand, there is a number of rigorous results about this equation. Here we only mention papers $[13,14,20,21]$ in which the existence of solutions satisfying (1.2) is studied by means of variational techniques. In contrast, to the best of our knowledge [9] is the only paper dealing with general problem (1.1), (1.2). The main result of that paper concerns the existence of nontrivial solutions under the assumption that the sequences p_{n}, V_{n} and $f_{n}(\cdot)$ are periodic in n, with the same period. Also we point out that in [5] the existence of a nontrivial solution is obtained under the assumption that p_{n} is independent of n while the potential V_{n} is infinitely growing at infinity. The Dirichlet problem for discrete p-Laplacian and $p(n)$-Laplacian equations are studied in [11] and [12] respectively (see also [17]).

We will study problem (1.1), (1.2) under the following assumptions. For any sequence $r_{n}, n \in \mathbb{Z}$, of real numbers we set

$$
r^{-}=\inf _{n \in \mathbb{Z}} r_{n} \quad \text { and } \quad r^{+}=\sup _{n \in \mathbb{Z}} r_{n}
$$

Throughout the paper we always assume that $1<p^{-} \leq p^{+}<\infty, 1<q^{-} \leq q^{+}<\infty$ and $q^{+} \leq p^{-}$.
(V1) The potential sequence V_{n} is such that $V_{n} \geq \alpha_{0}>0$ for all $n \in \mathbb{Z}$, and $V_{n} \rightarrow+\infty$ as $|n| \rightarrow \infty$.
(f1) The function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, n \in \mathbb{Z}$, is continuous. Moreover, for every $R>0$ there exists a positive constant $C(R)$ such that

$$
\left|f_{n}(t)\right| \leq C(R) \forall(n, t) \in \mathbb{Z} \times \mathbb{R},|t| \leq R .
$$

(f2) There exists $\theta>p^{+}$such that

$$
0<\theta F_{n}(t):=\theta \int_{0}^{t} f_{n}(s) d s \leq f_{n}(t) t \forall n \in \mathbb{Z}, t \in \mathbb{R} \backslash\{0\}
$$

(f3) $f_{n}(t)=o\left(|t|^{q^{+}-1}\right)$ as $t \rightarrow 0$ uniformly in $n \in \mathbb{Z}$.
(f4) $\frac{f_{n}(t)}{|t|^{q-1}}$ is an increasing function of t on $\mathbb{R} \backslash\{0\}$ for every $n \in \mathbb{Z}$.
(f5) $f_{n}(-t)=-f_{n}(t)$.
Remark 1.1. The function $g_{n}(t)=|t|^{\sigma_{n}-2} t$, where $\sigma^{-}>q^{+}$, satisfies assumptions (f1)-(f5).
Remark 1.2. Assumptions (f2) and (f3) imply that for any $\varepsilon>0$ there exists a bounded sequence $c_{n}=$ $c_{n}(\varepsilon)>0$ such that

$$
F_{n}(t) \geq-\varepsilon|t|^{q^{+}}+c_{n}|t|^{\theta}
$$

for all $n \in \mathbb{Z}$ and $t \in \mathbb{R}$.

https://daneshyari.com/en/article/4614854

Download Persian Version:

https://daneshyari.com/article/4614854

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: avcixmustafa@gmail.com, mustafa.avci@morgan.edu (M. Avci), alexander.pankov@morgan.edu (A. Pankov).

