

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Nontrivial solutions of discrete nonlinear equations with variable exponent

Mustafa Avci ^{a,b}, Alexander Pankov ^{a,*}

^a Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

ARTICLE INFO

Article history: Received 7 April 2015 Available online 27 May 2015 Submitted by V. Radulescu

 $\label{eq:keywords:} Keywords:$ Discrete p(n)-Laplacian equation Ground state solution Palais–Smale condition Nehari manifold Variational methods
Variable exponent sequence space

ABSTRACT

In the present paper, we show the existence of ground state solution of a discrete p(n)-Laplacian type equation involving unbounded potential by using the Mountain-Pass theorem and Nehari manifold.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study the following difference equation

$$-\nabla^{-}(\left|\nabla^{+}u_{n}\right|^{p_{n}-2}\nabla^{+}u_{n}) + V_{n}\left|u_{n}\right|^{q_{n}-2}u_{n} = f_{n}\left(u_{n}\right), \ n \in \mathbb{Z}$$
(1.1)

on the integer lattice, where $\nabla^+ u_n = u_{n+1} - u_n$ and $\nabla^- u_n = u_n - u_{n-1}$ are the forward and backward difference operators, respectively; V_n , $n \in \mathbb{Z}$, is a sequence of real numbers, and $f_n(t) : \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{Z}$, is a continuous function. We impose the following boundary condition at infinity

$$\lim_{|n| \to \infty} u_n = 0, \tag{1.2}$$

i.e., we are looking for homoclinic solutions.

Equation (1.1) is the discrete counterpart of the following nonlinear differential equation

$$-(|u'|^{p(x)-2}u')' + V(x)|u|^{q(x)-2}u_n = f(x,u)$$
(1.3)

 $\textit{E-mail addresses:} \ avcixmustafa@gmail.com, \ mustafa.avci@morgan.edu \ (M.\ Avci), \ alexander.pankov@morgan.edu \ (A.\ Pankov).$

^b Batman University, Turkey

^{*} Corresponding author.

Equations of the form (1.3), as well as their multi-dimensional versions, appear in many applications, such as fluid dynamics and nonlinear elasticity, to name a few (see, e.g., [2,18] and references therein). In the case when p(x) = q(x) = 2, (1.3) becomes the stationary nonlinear Schrödinger equation (NLS). It has an enormous number of applications, for instance, in nonlinear optics [10] and condensed matter physics [8].

As in the case of equation (1.3), equation (1.1) reduces to the stationary discrete nonlinear Schrödinger equation (DNLS) when $p_n = q_n = 2$. As its continuous counterpart, DNLS has many applications in various areas of physics (see, e.g., [3,4,7]). On the other hand, there is a number of rigorous results about this equation. Here we only mention papers [13,14,20,21] in which the existence of solutions satisfying (1.2)is studied by means of variational techniques. In contrast, to the best of our knowledge [9] is the only paper dealing with general problem (1.1), (1.2). The main result of that paper concerns the existence of nontrivial solutions under the assumption that the sequences p_n , V_n and $f_n(\cdot)$ are periodic in n, with the same period. Also we point out that in [5] the existence of a nontrivial solution is obtained under the assumption that p_n is independent of n while the potential V_n is infinitely growing at infinity. The Dirichlet problem for discrete p-Laplacian and p(n)-Laplacian equations are studied in [11] and [12] respectively (see

We will study problem (1.1), (1.2) under the following assumptions. For any sequence r_n , $n \in \mathbb{Z}$, of real numbers we set

$$r^- = \inf_{n \in \mathbb{Z}} r_n$$
 and $r^+ = \sup_{n \in \mathbb{Z}} r_n$.

Throughout the paper we always assume that $1 < p^- \le p^+ < \infty$, $1 < q^- \le q^+ < \infty$ and $q^+ \le p^-$.

- (V1) The potential sequence V_n is such that $V_n \geq \alpha_0 > 0$ for all $n \in \mathbb{Z}$, and $V_n \to +\infty$ as $|n| \to \infty$.
- (f1) The function $f_n: \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{Z}$, is continuous. Moreover, for every R > 0 there exists a positive constant C(R) such that

$$|f_n(t)| \le C(R) \ \forall (n,t) \in \mathbb{Z} \times \mathbb{R}, \ |t| \le R.$$

(f2) There exists $\theta > p^+$ such that

$$0 < \theta F_n(t) := \theta \int_0^t f_n(s) ds \le f_n(t) t \ \forall n \in \mathbb{Z}, t \in \mathbb{R} \setminus \{0\} \ .$$

- (f3) $f_n(t) = o(|t|^{q^+-1})$ as $t \to 0$ uniformly in $n \in \mathbb{Z}$.
- (f4) $\frac{f_n(t)}{|t|^{q+-1}}$ is an increasing function of t on $\mathbb{R}\setminus\{0\}$ for every $n\in\mathbb{Z}$. (f5) $f_n(-t)=-f_n(t)$.

Remark 1.1. The function $g_n(t) = |t|^{\sigma_n - 2} t$, where $\sigma^- > q^+$, satisfies assumptions (f1)–(f5).

Remark 1.2. Assumptions (f2) and (f3) imply that for any $\varepsilon > 0$ there exists a bounded sequence $c_n =$ $c_n(\varepsilon) > 0$ such that

$$F_n(t) \ge -\varepsilon |t|^{q^+} + c_n |t|^{\theta}$$

for all $n \in \mathbb{Z}$ and $t \in \mathbb{R}$.

Download English Version:

https://daneshyari.com/en/article/4614854

Download Persian Version:

https://daneshyari.com/article/4614854

<u>Daneshyari.com</u>