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Using wavelet leaders instead of wavelet coefficients, new sequence spaces of type 
Sν are defined and endowed with a natural topology. Some classical topological 
properties are then studied; in particular, a generic result about the asymptotic 
repartition of the wavelet leaders of a sequence in Lν is obtained. Eventually, 
comparisons and links with Oscillation spaces are also presented as well as with 
Sν spaces.
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1. Introduction

The study of the regularity of a signal by means of its wavelet coefficients is now a widely used tool. 
Mathematically, it involves the use of sequence spaces which are supposed to constitute an appropriate 
setting to handle the information. In order to study the regularity of a signal via the distribution of its wavelet 
coefficients, Sν spaces have been introduced and it has been shown that they contain more information than 
the classical Besov spaces (see [13]). Nevertheless, the use of these Sν spaces presents some weaknesses and 
then, new spaces of the same type have recently been introduced using wavelet leaders instead of wavelet 
coefficients (see [8]). These spaces are denoted by Lν .

Before giving more details about the introduction and the definition of Lν spaces, let us be more precise 
about the notion of regularity. Let x0 ∈ R and α ≥ 0. A locally bounded function f : R → R belongs to the 
Hölder space Cα(x0) if there exist a constant C > 0 and a polynomial P of degree strictly less than α such 
that

|f(x) − P (x)| ≤ C|x− x0|α

for all x in a neighbourhood of x0. The Hölder exponent of f at x0 is defined by
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hf (x0) := sup{α ≥ 0 : f ∈ Cα(x0)}

and the multifractal spectrum of f is the function df defined by

df (h) := dimH{x ∈ R : hf (x) = h}, h ∈ [0,+∞]

(where dimH denotes the Hausdorff dimension). This function gives a geometrical idea about the distribution 
of the singularities of f . For a general signal (i.e. a function obtained from real-life data), it is clearly 
impossible to estimate df numerically since it involves the successive determination of several intricate limits. 
Therefore one tries instead to estimate this spectrum from quantities which are numerically computable. 
Such a method is called a multifractal formalism.

The Frisch–Parisi conjecture, classically used, gives such an estimation based on a wavelet decomposition 
and the use of Besov spaces (see [23,12]). Nevertheless, it appeared that this use of Besov spaces is not 
sufficient to handle all the information concerning the pointwise regularity contained in the distribution of 
the wavelet coefficients (see [13]). In particular, it can only lead to recover increasing and concave hull of 
spectra.

In order to get a suitable context to obtain multifractal results in the non-concave case, Sν spaces have 
then been introduced (see [13]). These spaces contain the maximal information that can be derived from 
the repartition at every scale of the wavelet coefficients of a function. They have been studied in several 
papers: topological (and specific functional analysis) results were obtained, as well as answers for multifractal 
formalisms (see [5,6,4,1,3,2]). An implementation of this formalism has been proposed and tested on several 
theoretical examples in [18]. However, the Sν spaces can only detect increasing part of spectra.

Meanwhile, it appeared that more accurate information concerning the pointwise regularity can be ob-
tained when relying on wavelet leaders, which can be seen as local suprema of wavelet coefficients. Indeed, 
wavelet leaders give an easier characterization of the pointwise regularity than wavelet coefficients (see for 
example [16] and references therein). In particular, they allow to obtain information about the inter-scale 
organization of the wavelet coefficients, without making any a priori probabilistic assumptions on their 
repartition. In this context, Oscillation spaces have been introduced as a generalization of Besov spaces 
using wavelet leaders (see [15]) and multifractal results have been obtained (see [14,16]). In particular, 
Oscillation spaces gives a method which allows to recover increasing and decreasing parts of spectra. Never-
theless, this method is still limited to concave spectra. So, a natural idea was to extend the study of the Sν

spaces (defined directly using the wavelet coefficients) to the context of wavelet leaders. Those spaces, called 
Lν spaces and introduced in [8], lead to better approximations for non-concave spectra with a decreasing 
part. Several positive results have been obtained in [8]. Moreover, in [18], the different formalisms (based on 
Oscillation spaces, Sν spaces and Lν spaces) have been compared. It appeared that the method based on the 
Lν spaces is more efficient from the theoretical point of view and that in practice, it gives complementary 
results to those obtained using the formalism based on Oscillation spaces.

In this paper, in order to understand better the structure of the Lν spaces, we endow them with a 
topology. As done in the case of the Sν spaces (see [3,4,6]), one of our purposes is to get applications in 
multifractal analysis and in particular, to obtain the generic validity of the multifractal formalism based on 
Lν spaces. This would give a theoretical justification to this method. Indeed, as for the other multifractal 
formalisms, the method based on the Lν spaces never holds in complete generality, but it yields an upper 
bound for the multifractal spectrum of all functions in the space Lν (see [8]). This is the best that can be 
expected: usually, there are no non-trivial minorations for the multifractal spectrum of all functions in the 
space. Nevertheless, one can hope that for most of the functions in the space, that is to say for a generic 
subset of the space (in the sense of Baire categories), the inequality becomes an equality.

Let us give some classical notations used in the paper. The set of strictly positive natural numbers is N
and we denote N0 := {0} ∪ N. We use the notation λ to refer to the dyadic interval
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