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In this paper we solve the problem of extending continuous functions with nonempty 
subdifferential at every point of a closed subset A of Rn to functions with the same 
property defined in the whole Rn, keeping the property of outer semicontinuity of 
the subdifferential, which is a set-valued function. The proof is constructive, and 
gives us a wide range of possible extensions.
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1. Introduction and preliminary results

Extension problems play a central role in analysis. They take the following general form. Let X and Y
be metric spaces, let F (X, Y ) be a class of functions from X to Y , and A ⊂ X. The extension problem is 
to determine whether each function in F (A, Y ) has an extension in F (X, Y ). The most celebrated classical 
results are the theorem of Tietze, for continuous functions, and the Whitney’s Extension Theorem, for 
Cm functions [7]. But we cannot forget the simple formula for extending real-valued Lipschitz functions 
by means of inf-convolution that McShane, and Whitney himself, pointed out. When we are looking for 
extensions, it is important that the extension keeps as many properties of the original function as possible. 
Moreover, it is also important to know if we are able to construct such extensions, or we can only guarantee 
their existence.

Nonsmooth analysis is becoming a more and more important tool to deal with functions, because it allows 
us to extend Calculus to a broader setting. Among the different nonsmooth concepts the subdifferential is 
probably the most important. For an elementary discussion about this subject see [5].

The natural frame for subdifferentiability is that of real extended valued lower semicontinuous functions. 
However, if we want to extend functions, non-continuous extensions seem of little interest. In fact any 
bounded continuous function can be extended to a lower semicontinuous function in a trivial way, moreover 
if we admit extended valued functions, any continuous function f on a closed subset A of Rn can be extended 
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to Rn as a lower semicontinuous function, by setting f = +∞ on Rn
�A. For this reason we are interested 

only in continuous functions and continuous extensions.
Let us recall the definition of the subdifferential.

Definition 1. Let f : Rn → R be a continuous function, x0 ∈ R
n. We define the subdifferential of f at x0 as 

the set of ζ ∈ R
n satisfying:

lim inf
x→x0

f(x) − f(x0) − 〈ζ, x− x0〉
‖x− x0‖

≥ 0.

We will denote this subdifferential by ∂f(x0). We will use the following characterization:

Proposition 1. Let f : Rn → R be a continuous function, x0 ∈ R
n. Then ζ ∈ ∂f(x0) if and only if there 

exists a differentiable function ϕ such that ϕ(x0) = f(x0), ∇ϕ(x0) = ζ, and ϕ(x) ≤ f(x) near x0.

Another useful notion is the limiting subdifferential, denoted by ∂Lf(x0).

Definition 2. Let f : Rn → R be a continuous function, x0 ∈ R
n, and ζ0 ∈ R

n. We say that ζ0 ∈ ∂Lf(x0)
provided that there are sequences (xn)n, converging to x0, and (ζn)n, converging to ζ0, such that ζn ∈
∂f(xn).

If a function f satisfies ∂Lf(x0) = ∂f(x0), we say that f is regular at x0. We will also use the following 
notion.

Definition 3. Let f : Rn → R be a locally Lipschitz function, x0 ∈ R
n. We define the generalized gradient 

of f at x0, denoted by ∇f(x0), as the closed convex hull of the set ∂Lf(x0).

From the fact that ∂f(x0) is always a closed convex set, it follows that for locally Lipschitz regular 
functions we have

∇f(x0) = ∂Lf(x0) = ∂f(x0).

We now present some elementary results whose proofs we will omit.

Proposition 2. Let f, g : Rn → R be two functions. Suppose that f is C1 and non-negative, and g is lsc. 
Then

∂(fg)(x0) = g(x0)∇f(x0) + f(x0)∂g(x0)

for every x0 such that f(x0) > 0.

Proposition 3. Let f, g : R
n → R be two functions. Suppose that f is C1 and non-negative, and g is 

continuous. Then

∂L(fg)(x0) = g(x0)∇f(x0) + f(x0)∂Lg(x0)

for every x0 such that f(x0) > 0.

Corollary 4. Let f, g : Rn → R be two functions. Suppose that f is C1 and non-negative, and g is continuous 
and regular. Then fg is also regular at every x0 such that f(x0) > 0.
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