Boundary value problems for discontinuous perturbations of singular ϕ-Laplacian operator

Petru Jebelean*, Călin Şerban
Department of Mathematics, West University of Timişoara, 4, Blvd. V. Pârvan, 300223, Timişoara, Romania

A R T I C L E I N F O

Article history:

Received 21 November 2014
Available online 9 June 2015
Submitted by H. Frankowska

Keywords:

Differential inclusions
Singular ϕ-Laplacian
Dirichlet problem
Periodic solutions
Neumann problem
Filippov type solutions

A B S T R A C T

Systems of differential inclusions of the form

$$
-\left(\phi\left(u^{\prime}\right)\right)^{\prime} \in \partial F(t, u), \quad t \in[0, T]
$$

where $\phi=\nabla \Phi$, with Φ strictly convex, is a homeomorphism of the ball $B_{a} \subset \mathbb{R}^{N}$ onto \mathbb{R}^{N}, are considered under Dirichlet, periodic and Neumann boundary conditions. Here, $\partial F(t, x)$ stands for the generalized Clarke gradient of $F(t, \cdot)$ at $x \in \mathbb{R}^{N}$. Using nonsmooth critical point theory, we obtain existence results under some appropriate conditions on the potential F. Examples of applications concerning Filippov type solutions are also provided.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Using a variational approach, we obtain existence results for differential inclusions systems of type

$$
\begin{equation*}
-\left(\phi\left(u^{\prime}\right)\right)^{\prime} \in \partial F(t, u), \quad t \in[0, T] ; \quad l\left(u, u^{\prime}\right)=0 \tag{1.1}
\end{equation*}
$$

where $l\left(u, u^{\prime}\right)=0$ denotes one of the Dirichlet, periodic or Neumann boundary conditions and ϕ satisfies
$\left(H_{\Phi}\right) \phi$ is a homeomorphism from B_{a} onto \mathbb{R}^{N} such that $\phi(0)=0, \phi=\nabla \Phi$, with $\Phi: \bar{B}_{a} \rightarrow(-\infty, 0]$ of class C^{1} on B_{a}, continuous and strictly convex on \bar{B}_{a}.

[^0]http://dx.doi.org/10.1016/j.jmaa.2015.06.004
0022-247X/© 2015 Elsevier Inc. All rights reserved.

The mapping $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is assumed to verify the hypothesis:
$\left(H_{F}\right) \quad$ (i) $F(\cdot, x):[0, T] \rightarrow \mathbb{R}$ is measurable for every $x \in \mathbb{R}^{N}$ and $F(\cdot, 0)=0$;
(ii) for each $\rho>0$ there is some $\alpha_{\rho} \in L^{1}([0, T] ; \mathbb{R})$ such that, for all $t \in[0, T]$ and $x, y \in \bar{B}_{\rho}$, it holds

$$
|F(t, x)-F(t, y)| \leq \alpha_{\rho}(t)|x-y| .
$$

Here and hereafter, $|\cdot|$ stands for the Euclidean norm on $\mathbb{R}^{N}, B_{\sigma} \subset \mathbb{R}^{N}$ denotes the open ball of center 0 and radius σ and $\partial F(t, x)$ stands for the generalized Clarke gradient of $F(t, \cdot)$ at $x \in \mathbb{R}^{N}$. Also, throughout the paper, we denote by C the space of all continuous functions $u:[0, T] \rightarrow \mathbb{R}^{N}$, endowed with the usual norm $\|u\|_{C}=\max _{t \in[0, T]}|u(t)|$.

A function $u \in C^{1}:=C^{1}\left([0, T] ; \mathbb{R}^{N}\right)$ is said to be solution of the differential inclusions system in problem (1.1) if $\left\|u^{\prime}\right\|_{C}<a, \phi\left(u^{\prime}\right)$ is absolutely continuous and u satisfies

$$
-\left(\phi\left(u^{\prime}(t)\right)\right)^{\prime} \in \partial F(t, u(t)), \text { for a.e. } t \in[0, T] .
$$

For $p \in(1, \infty)$, let ϕ_{p} be defined by

$$
\phi_{p}(y)=\frac{|y|^{p-2} y}{\left(1-|y|^{p}\right)^{1-1 / p}} \quad\left(y \in B_{1}\right) .
$$

It is easy to see that ϕ_{p} satisfies $\left(H_{\Phi}\right)$ with $\Phi_{p}: \bar{B}_{1} \rightarrow \mathbb{R}$ given by

$$
\Phi_{p}(y)=-\left(1-|y|^{p}\right)^{1 / p} \quad\left(y \in \bar{B}_{1}\right) .
$$

This choice of ϕ engenders the " p-relativistic" operator

$$
u \mapsto \mathcal{R}_{p} u:=\left(\frac{\left|u^{\prime}\right|^{p-2} u^{\prime}}{\left(1-\left|u^{\prime}\right|^{p}\right)^{1-1 / p}}\right)^{\prime}
$$

notice that the classical relativistic operator is obtained for $p=2$.
In recent years, much attention has been paid to the study of boundary value problems with singular ϕ-Laplacian, with special attention to the relativistic operator \mathcal{R}_{2} (see e.g., $[3,5,6,9,16,19]$ and the references therein). Mainly, the obtained results concern the existence and the multiplicity of solutions for problems involving continuous perturbations of the ϕ-Laplacian and less of them deal with discontinuous perturbations. In this second direction, we refer to the papers [10] and [23], where the existence of solutions of differential inclusions systems is derived by means of fixed-point and topological techniques. In [17] the variational method is employed to treat the periodic problem

$$
\begin{equation*}
-\mathcal{R}_{2} u \in \partial F(t, u), \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T), \tag{1.2}
\end{equation*}
$$

with $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfying $\left(H_{F}\right)(i)$ together with
$\left(\widetilde{H}_{F}\right)$ there exists $\alpha \in L^{1}([0, T] ; \mathbb{R})$ such that for all $t \in[0, T]$ and $x, y \in \mathbb{R}^{N}$, it holds

$$
|F(t, x)-F(t, y)| \leq \alpha(t)|x-y|
$$

https://daneshyari.com/en/article/4614889

Download Persian Version:

https://daneshyari.com/article/4614889

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jebelean@math.uvt.ro (P. Jebelean), cserban2005@yahoo.com (C. Şerban).

