Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Boundary value problems for discontinuous perturbations of singular ϕ -Laplacian operator

Petru Jebelean*, Călin Şerban

Department of Mathematics, West University of Timişoara, 4, Blvd. V. Pârvan, 300223, Timişoara, Romania

ARTICLE INFO

Article history: Received 21 November 2014 Available online 9 June 2015 Submitted by H. Frankowska

Keywords: Differential inclusions Singular ϕ -Laplacian Dirichlet problem Periodic solutions Neumann problem Filippov type solutions ABSTRACT

Systems of differential inclusions of the form

 $-(\phi(u'))' \in \partial F(t, u), \quad t \in [0, T],$

where $\phi = \nabla \Phi$, with Φ strictly convex, is a homeomorphism of the ball $B_a \subset \mathbb{R}^N$ onto \mathbb{R}^N , are considered under Dirichlet, periodic and Neumann boundary conditions. Here, $\partial F(t, x)$ stands for the generalized Clarke gradient of $F(t, \cdot)$ at $x \in \mathbb{R}^N$. Using nonsmooth critical point theory, we obtain existence results under some appropriate conditions on the potential F. Examples of applications concerning Filippov type solutions are also provided.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Using a variational approach, we obtain existence results for differential inclusions systems of type

$$-(\phi(u'))' \in \partial F(t,u), \quad t \in [0,T]; \qquad l(u,u') = 0,$$
(1.1)

where l(u, u') = 0 denotes one of the Dirichlet, periodic or Neumann boundary conditions and ϕ satisfies

 $(H_{\Phi}) \phi$ is a homeomorphism from B_a onto \mathbb{R}^N such that $\phi(0) = 0$, $\phi = \nabla \Phi$, with $\Phi : \overline{B}_a \to (-\infty, 0]$ of class C^1 on B_a , continuous and strictly convex on \overline{B}_a .

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2015.06.004

CrossMark

E-mail addresses: jebelean@math.uvt.ro (P. Jebelean), cserban2005@yahoo.com (C. Şerban).

The mapping $F: [0,T] \times \mathbb{R}^N \to \mathbb{R}$ is assumed to verify the hypothesis:

 $\begin{array}{ll} (H_F) & (i) \ F(\cdot, x): [0,T] \to \mathbb{R} \ is \ measurable \ for \ every \ x \in \mathbb{R}^N \ and \ F(\cdot, 0) = 0; \\ (ii) \ for \ each \ \rho > 0 \ there \ is \ some \ \alpha_\rho \in L^1([0,T];\mathbb{R}) \ such \ that, \ for \ all \ t \in [0,T] \ and \ x, y \in \overline{B}_\rho, \ it \ holds \ hol$

$$|F(t,x) - F(t,y)| \le \alpha_{\rho}(t)|x - y|.$$

Here and hereafter, $|\cdot|$ stands for the Euclidean norm on \mathbb{R}^N , $B_{\sigma} \subset \mathbb{R}^N$ denotes the open ball of center 0 and radius σ and $\partial F(t, x)$ stands for the generalized Clarke gradient of $F(t, \cdot)$ at $x \in \mathbb{R}^N$. Also, throughout the paper, we denote by C the space of all continuous functions $u : [0, T] \to \mathbb{R}^N$, endowed with the usual norm $||u||_C = \max_{t \in [0,T]} |u(t)|$.

A function $u \in C^1 := C^1([0,T]; \mathbb{R}^N)$ is said to be *solution* of the differential inclusions system in problem (1.1) if $||u'||_C < a, \phi(u')$ is absolutely continuous and u satisfies

$$-(\phi(u'(t)))' \in \partial F(t, u(t)), \text{ for a.e. } t \in [0, T].$$

For $p \in (1, \infty)$, let ϕ_p be defined by

$$\phi_p(y) = \frac{|y|^{p-2}y}{(1-|y|^p)^{1-1/p}} \quad (y \in B_1).$$

It is easy to see that ϕ_p satisfies (H_{Φ}) with $\Phi_p: \overline{B}_1 \to \mathbb{R}$ given by

$$\Phi_p(y) = -(1 - |y|^p)^{1/p} \quad (y \in \overline{B}_1).$$

This choice of ϕ engenders the "*p*-relativistic" operator

$$u \mapsto \mathcal{R}_p u := \left(\frac{|u'|^{p-2}u'}{(1-|u'|^p)^{1-1/p}}\right)';$$

notice that the classical *relativistic* operator is obtained for p = 2.

In recent years, much attention has been paid to the study of boundary value problems with singular ϕ -Laplacian, with special attention to the relativistic operator \mathcal{R}_2 (see e.g., [3,5,6,9,16,19] and the references therein). Mainly, the obtained results concern the existence and the multiplicity of solutions for problems involving continuous perturbations of the ϕ -Laplacian and less of them deal with discontinuous perturbations. In this second direction, we refer to the papers [10] and [23], where the existence of solutions of differential inclusions systems is derived by means of fixed-point and topological techniques. In [17] the variational method is employed to treat the periodic problem

$$-\mathcal{R}_2 u \in \partial F(t, u), \qquad u(0) - u(T) = 0 = u'(0) - u'(T), \tag{1.2}$$

with $F: [0,T] \times \mathbb{R}^N \to \mathbb{R}$ satisfying (H_F) (i) together with

 (\widetilde{H}_F) there exists $\alpha \in L^1([0,T];\mathbb{R})$ such that for all $t \in [0,T]$ and $x, y \in \mathbb{R}^N$, it holds

$$|F(t,x) - F(t,y)| \le \alpha(t)|x - y|,$$

Download English Version:

https://daneshyari.com/en/article/4614889

Download Persian Version:

https://daneshyari.com/article/4614889

Daneshyari.com