

Singular values of convex functions of operators and the arithmetic-geometric mean inequality

Omar Hirzallah
Department of Mathematics, Hashemite University, Zarqa, Jordan

A R T I C L E I N F O

Article history:

Received 17 May 2015
Available online 18 August 2015
Submitted by J.A. Ball
Keywords:
Singular value
Convex function
Compact operator
Positive operator
Inequality

A B S T R A C T

We prove singular value inequalities for convex functions of products and sums of operators that generalize the arithmetic-geometric mean inequality for operators. Among other results, we prove that if $A_{i}, B_{i}, X_{i}, Y_{i}, i=1, \ldots, n$ are operators on a complex separable Hilbert space such that $\frac{\left|X_{i}\right|^{2}+\left|Y_{i}\right|^{2}}{2 n} \leq I, i=1, \ldots, n$ and if f is a nonnegative increasing convex function on $[0, \infty)$ satisfying $f(0)=0$, then

$$
\begin{aligned}
& s_{j}\left(f\left(\left|\sum_{i=1}^{n} A_{i} X_{i} Y_{i}^{*} B_{i}^{*}\right|\right)\right) \\
& \quad \leq \frac{1}{2} s_{j}\left(\bigoplus_{k=1}^{n}\left(X_{k}^{*}\left(\sum_{i=1}^{n} f\left(\left|A_{i}^{*} A_{k}\right|\right)\right) X_{k}+Y_{k}^{*}\left(\sum_{i=1}^{n} f\left(\left|B_{i}^{*} B_{k}\right|\right)\right) Y_{k}\right)\right)
\end{aligned}
$$

for $j=1,2, \ldots$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{B}(\mathbb{H})$ denote the algebra of all bounded linear operators on a complex separable Hilbert space \mathbb{H}. For a compact operator $A \in \mathbb{B}(\mathbb{H})$, let $s_{1}(A), s_{2}(A), \ldots$ denote the singular values of A (i.e. the eigenvalues of $|A|=\left(A^{*} A\right)^{1 / 2}$) arranged in decreasing order and repeated according to multiplicity. For the sake of brevity, when we consider $s_{j}(A)$, we are assuming that A is a compact operator. Some of the important properties of singular values are that

$$
\begin{equation*}
s_{j}\left(A^{*} A\right)=s_{j}\left(A A^{*}\right) \tag{1.1}
\end{equation*}
$$

and the singular values of operators are unitarily invariance, that is

[^0]\[

$$
\begin{equation*}
s_{j}(U A V)=s_{j}(A) \tag{1.2}
\end{equation*}
$$

\]

for $j=1,2, \ldots$, where U, V are any unitary operators in $\mathbb{B}(\mathbb{H})$.
By the symbol $\|\cdot\|$ we mean the usual operator norm, which is defined on all of $\mathbb{B}(\mathbb{H})$. In fact, if $A, X, Y \in$ $\mathbb{B}(\mathbb{H})$ such that A is compact, then $\|A\|=s_{1}(A)$ and

$$
\begin{equation*}
s_{j}(X A Y) \leq\|X\|\|Y\| s_{j}(A) \tag{1.3}
\end{equation*}
$$

for $j=1,2, \ldots$ (see, e.g., [2, p. 75] or [5, p. 27]).
The direct sum of operators A_{1}, \ldots, A_{n} in $\mathbb{B}(\mathbb{H})$, denoted by $\bigoplus_{k=1}^{n} A_{k}$, is the block-diagonal operator matrix defined on $\bigoplus_{k=1}^{n} \mathbb{H}$ by

$$
\bigoplus_{k=1}^{n} A_{k}=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A_{n}
\end{array}\right]
$$

It is clear that for $A, B \in \mathbb{B}(\mathbb{H})$,

$$
\begin{gather*}
s_{j}(A) \leq s_{j}(B), j=1,2, \ldots \Leftrightarrow s_{j}(A \oplus 0) \leq s_{j}(B \oplus 0), j=1,2, \ldots, \tag{1.4}\\
s_{j}(A) \leq s_{j}(B), j=1,2, \ldots \Leftrightarrow s_{j}(A \oplus 0) \leq s_{j}(B), j=1,2, \ldots \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
s_{j}(A) \leq s_{j}(B), j=1,2, \ldots \Leftrightarrow s_{j}(A) \leq s_{j}(B \oplus 0), j=1,2, \ldots \tag{1.6}
\end{equation*}
$$

The arithmetic-geometric mean inequality for scalars asserts that if $a, b \in \mathbb{C}$, then

$$
|a b| \leq \frac{|a|^{2}+|b|^{2}}{2}
$$

An elegant generalization of this inequality has been given in [3]. This generalization asserts that if $A, B \in$ $\mathbb{B}(\mathbb{H})$, then

$$
\begin{equation*}
s_{j}\left(A B^{*}\right) \leq \frac{1}{2} s_{j}\left(|A|^{2}+|B|^{2}\right) \tag{1.7}
\end{equation*}
$$

for $j=1,2, \ldots$ The inequality (1.7) has attracted several mathematicians and a lot of papers have been written on this subject.

Recently, in [1] a new generalization of the inequality (1.7) has been given. This generalization asserts that if $A, B, X \in \mathbb{B}(\mathbb{H})$, then

$$
\begin{equation*}
s_{j}\left(A X B^{*}\right) \leq \frac{\|X\|}{2} s_{j}\left(|A|^{2}+|B|^{2}\right) \tag{1.8}
\end{equation*}
$$

for $j=1,2, \ldots$ Moreover, it is shown in [1] that if $A_{i}, B_{i}, X_{i} \in \mathbb{B}(\mathbb{H}), i=1, \ldots, n$, such that X_{i} is positive, $i=1, \ldots, n$, then

https://daneshyari.com/en/article/4614907

Download Persian Version:

https://daneshyari.com/article/4614907

Daneshyari.com

[^0]: E-mail address: o.hirzal@hu.edu.jo.
 http://dx.doi.org/10.1016/j.jmaa.2015.08.036
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

