Measure zero stability problem of a new quadratic functional equation

Jaeyoung Chung ${ }^{\text {a,* }}$, John Michael Rassias ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Mathematics, Kunsan National University, Kunsan 573-701, Republic of Korea
${ }^{\text {b }}$ National and Capodistrian University of Athens, Pedagogical Department E. E., Section of Mathematics and Informatics, Greece

A R T I C L E I N F O

Article history:

Received 30 March 2015
Available online 14 August 2015
Submitted by M.J. Schlosser

Keywords:

Asymptotic behavior
Lebesgue measure
Quadratic functional equation
First category
Baire category theorem

A B S T R A C T

Let \mathbb{R} be the set of real numbers, Y a Banach space and $f: \mathbb{R} \rightarrow Y$. We prove the Ulam-Hyers stability theorem for the new quadratic functional equation

$$
\sum_{j=2}^{k}\left(f\left(x_{1}+x_{j}\right)+f\left(x_{1}-x_{j}\right)\right)=2(k-1) f\left(x_{1}\right)+2 \sum_{j=2}^{k} f\left(x_{j}\right)
$$

for all $\left(x_{1}, \ldots, x_{k}\right) \in \Gamma$, where $\Gamma \subset \mathbb{R}^{k}$ is of Lebesgue measure 0 . Using the result we obtain an asymptotic behavior of the equation.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, we denote by X and Y a real normed space and a real Banach space, respectively and $\epsilon \geq 0$. A mapping $f: X \rightarrow Y$ is quadratic if f satisfies the equation

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)-2 f(y)=0 \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$. F. Skof was the first author who proved the Ulam-Hyers stability of the quadratic functional equation [22].

Theorem 1.1. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

[^0]$$
\|f(x)-Q(x)\| \leq \frac{1}{2} \epsilon
$$
for all $x \in X$.
It is a very natural subject to consider functional equations or inequalities satisfied on restricted domains or satisfied under restricted conditions (see [1-6,8,9,11,14,15,18,20,21] for related results). In particular we refer to $[7]$ for most recent developments on conditional stability for functional equations. Among the results, S.M. Jung and J.M. Rassias proved the Ulam-Hyers stability of the quadratic functional equations in a restricted domain [13,17].

Theorem 1.2. Let $d>0$. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon \tag{1.2}
\end{equation*}
$$

for all $x, y \in X$ with $\|x\|+\|y\| \geq d$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{7}{2} \epsilon \tag{1.3}
\end{equation*}
$$

for all $x \in X$.
It is very natural to ask if the restricted domain $D:=\left\{(x, y) \in X^{2}:\|x\|+\|y\| \geq d\right\}$ can be replaced by a much smaller subset $\Gamma \subset D$ (e.g. a subset of measure 0 in a measure space X). In the paper [10], the stability of (1.2) was considered in a set $\Gamma \subset\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq d\right\}$ of measure $m(\Gamma)=0$ when $f: \mathbb{R} \rightarrow Y$. As a result it is proved that if $f: \mathbb{R} \rightarrow Y$ satisfies (1.2) for all $(x, y) \in \Gamma$, then there exists a unique quadratic function $Q: \mathbb{R} \rightarrow Y$ satisfying (1.3). As a consequence, it is also proved that if f satisfies the asymptotic condition

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \rightarrow 0 \tag{1.4}
\end{equation*}
$$

as $|x|+|y| \rightarrow \infty$ in Γ, then f is quadratic.
In Section 2 of the paper, as an abstract approach we consider the Ulam-Hyers stability of a new quadratic functional equation (see [19])

$$
\begin{equation*}
\left\|\sum_{j=2}^{k}\left(f\left(x_{1}+x_{j}\right)+f\left(x_{1}-x_{j}\right)\right)-2(k-1) f\left(x_{1}\right)-2 \sum_{j=2}^{k} f\left(x_{j}\right)\right\| \leq \epsilon \tag{1.5}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{k}\right) \in \Omega$, where $\Omega \subset X^{k}$ satisfies the condition denoted by (C).
In Section 3 of the paper, based on the Baire category theorem we construct a subset $\Gamma \subset \mathbb{R}^{k}$ of Lebesgue measure $m(\Gamma)=0$ which satisfies the condition (C). As a result we prove that if $f: \mathbb{R} \rightarrow Y$ satisfies (1.5) for all $\left(x_{1}, \ldots, x_{k}\right) \in \Gamma$, then there exists a unique quadratic function $Q: \mathbb{R} \rightarrow Y$ such that

$$
\left\|f(x)-Q(x)-\frac{f(0)}{3}\right\| \leq \frac{7 \epsilon}{3(k-1)}
$$

for all $x \in \mathbb{R}$. As a consequence of our result we also prove that $f: \mathbb{R} \rightarrow Y$ satisfies the asymptotic condition

$$
\left\|\sum_{j=2}^{k}\left(f\left(x_{1}+x_{j}\right)+f\left(x_{1}-x_{j}\right)\right)-2(k-1) f\left(x_{1}\right)-2 \sum_{j=2}^{k} f\left(x_{j}\right)\right\| \rightarrow 0
$$

as $\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{k}\right| \rightarrow \infty$ in Γ if and only if f is quadratic.

https://daneshyari.com/en/article/4614908

Download Persian Version:
https://daneshyari.com/article/4614908

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jychung@kunsan.ac.kr (J. Chung), jrassias@primedu.uoa.gr (J.M. Rassias).
 http://dx.doi.org/10.1016/j.jmaa.2015.08.031
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

