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The present work provides well-posedness and exponential decay results for the 
Blackstock–Crighton–Kuznetsov equation arising in the modeling of nonlinear 
acoustic wave propagation in thermally relaxing viscous fluids. First, we treat the 
associated linear equation by means of operator semigroups. Moreover, we derive 
energy estimates which we will use in a fixed-point argument in order to obtain 
well-posedness of the Blackstock–Crighton–Kuznetsov equation. Using a classical 
barrier argument we prove exponential decay of solutions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The present work aims to enhance the mathematical understanding of nonlinear acoustic wave propaga-
tion in viscous, thermally conducting, inert fluids. In particular, our motivation is to deal with higher order 
models arising in nonlinear acoustics. An acoustic wave propagates through a medium as a local pressure 
change. Nonlinear phenomena typically occur at high acoustic pressures which are used for several medical 
and industrial purposes such as lithotripsy, thermotherapy, ultrasound cleaning and sonochemistry. Due to 
this broad range of applications, nonlinear acoustics is currently an active field of research, see [3,4,8,9,
11–16,10,17,19–21] and the references therein.

The classical models in nonlinear acoustics are partial differential equations of second order in time which 
are characterized by the presence of a viscoelastic damping. The most general of these conventional models 
is Kuznetsov’s equation

utt − c2Δu− bΔut =
( 1
c2

B
2A (ut)2 + |∇u|2

)
t
, (1.1)
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where u denotes the acoustic velocity potential, c > 0 is the speed of sound, b ≥ 0 is the diffusivity of sound 
and B/A is the parameter of nonlinearity. Neglecting local nonlinear effects (in the sense that the expression 
c2|∇u|2 − (ut)2 is sufficiently small) one arrives at the Westervelt equation

utt − bΔut − c2Δu =
( 1
c2

(
1 + B

2A
)
(ut)2

)
t
. (1.2)

Both, the Kuznetsov and the Westervelt equation, can alternatively be formulated in terms of the acoustic 
pressure p via the relation ρut = p, where ρ denotes the mass density. The quantities A and B occurring 
in the parameter of nonlinearity are the coefficients of the first and second order terms in the Taylor series 
expansion of the variation of pressure in the medium in terms of variation of the density. For a detailed 
introduction to the field of nonlinear acoustics we refer to [8].

The Kuznetsov equation in its turn can be regarded as a simplification (for a small thermal conductivity 
a = νPr−1, where ν is the kinematic viscosity and Pr is the Prandtl number) of the higher order model

(aΔ − ∂t)(utt − c2Δu− bΔut) =
( 1
c2

B
2A (ut)2 + |∇u|2

)
tt

(1.3)

which we call Blackstock–Crighton–Kuznetsov equation. Neglecting local nonlinear effects as it is done 
when reducing the Kuznetsov equation to the Westervelt equation we arrive at the Blackstock–Crighton–
Westervelt equation

(aΔ − ∂t)(utt − c2Δu− bΔut) =
( 1
c2

(
1 + B

2A
)
(ut)2

)
tt
. (1.4)

For more information on the derivation of (1.3) and (1.4) we refer to Section 2.
The Westervelt and the Kuznetsov equation as well as the Khoklov–Zabolotskaya–Kuznetsov equation, 

which is another standard model in nonlinear acoustics, have recently been quite extensively investigated 
(see, e.g., [4,9,11,13,12,14,16,19]). Research on higher order models such as (1.3) and (1.4) is still in an early 
stage. The starting point was [3] where well-posedness and exponential decay of solutions for (1.4) together 
with homogeneous Dirichlet boundary conditions was shown. The goal of the present paper is to pro-
vide results on well-posedness and exponential decay for the more general Blackstock–Crighton–Kuznetsov 
equation (1.3) which is one more step towards closing the gap of missing results on higher order models in 
nonlinear acoustics.

More precisely, the present work is devoted to the homogeneous Dirichlet boundary value problem
⎧⎪⎪⎨
⎪⎪⎩

(aΔ − ∂t)(utt − bΔut − c2Δu) = (k(ut)2 + s|∇u|2)tt in (0, T ) × Ω,

(u, ut, utt) = (u0, u1, u2) on {t = 0} × Ω,

(u,Δu) = (0, 0) on [0, T ) × Γ,

(1.5)

on a bounded domain Ω ⊂ R
n of dimension n ∈ {1, 2, 3} with smooth boundary Γ = ∂Ω, where T > 0 is 

either finite or infinite. The initial values u0, u1, u2 : Ω → R are given and u : [0, T ) ×Ω → R is the unknown. 
Moreover, we assume that a, b, c, k > 0 are constants and s ∈ {0, 1}. The case s = 1 corresponds to (1.3)
whereas s = 0 relates to (1.4). The restriction on the dimension of the spatial domain Ω is imposed in order 
to be able to use the embedding H2(Ω) ↪→ L∞(Ω) which we will do at several crucial steps. We therefore 
point out that our results do not hold for n ≥ 4. However, this is not of relevance in practical applications 
anyway.

Here, beside the classical Dirichlet boundary condition u|Γ = 0 we impose Δu|Γ = 0, since this ensures 
that both, aΔu − ut and utt − bΔut − c2Δu, have homogeneous Dirichlet boundary conditions such that 
the homogeneous Dirichlet Laplacian can be applied. In particular, Δu|Γ = 0 allows us to interchange the 
differential expressions on the left-hand side which we will do when deriving energy estimates.
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