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This paper concerns a model for tumor cell migration through the surrounding 
extracellular matrix by considering mass balance phenomena involving the chemical 
interactions produced on the cell surface. The well-posedness of this model is proven. 
An asymptotic analysis via a suitable hydrodynamic limit completes the description 
of the macroscopic behavior.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

There is a huge literature describing mathematical models for cell migration through the extracellular 
matrix (ECM), specially tumor cells, since they usually try to reach a blood vessel to obtain nutrients or 
simply invade other parts of the body in a metastatic process. There are a lot of biological mechanisms 
involved in cell movement such as signaling, diffusion, chemotaxis, haptotaxis, reorientation due to the 
surrounding tissue fibers, cell–cell interactions, etc., and also some mechanical considerations as balance 
laws, mechanical forces, pressure, etc. (see for example [2,5,7–12]).

In general, there is an analogy with the models for mechanical particles, where biological considerations 
are included in several ways. For example, reorientations of the particles due to biological interactions can 
be modeled by a Boltzmann-type equation where the usual collision kernel plays the role of a reorientation 
kernel. Of course, macroscopic descriptions (Navier–Stokes or Keller–Segel models) are very common, and 
the connections between kinetic and hydrodynamic models by means of limiting procedures have been 
largely treated in the literature (see for example [1–5,7,8]).
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Following the analogy with mechanical models, it is remarkable the framework of Kinetic Theory of Active 
Particles (KTAP) introduced by Bellomo et al. (see for example [3] and the references therein), where active 
particles play the double role of mechanical entities and living beings. This theory allows to construct models 
for cell movement that take into account the heterogeneity of cells, the biological interactions, birth/death 
phenomena, and also different scales of description. In this spirit, a recent paper by Kelkel and Surulescu [9], 
presents a multiscale model describing the evolution of a tumor cell population density where the movement 
of the cells is mainly due to receptor dynamics on the cell surface. The model links several processes such 
as haptotaxis, binding of the cell surface to the ECM fibers, chemotaxis due to a substance originated from 
the degradation of tissue fibers, and the law of mass action of the receptor on the cell surface.

In this work, we start from the multiscale model presented in [9], and include some mechanical and 
biological considerations that improve it. Actually, in the equations for the ECM dynamics we introduce the 
mass balance due to interactions with the cell population. This mass exchange, together with the creation 
and degradation of substances, constitute a key part in the state of the ECM, and so modifies the dynamics 
of the population. Moreover, we perform a hydrodynamic limit which provides macroscopic information 
on the behavior of the cell population and preserves the influence of the two main biological processes, 
haptotaxis and chemotaxis.

For the sake of selfconsistency, we briefly describe in the next subsection the elements involved in cell 
motion as well as our improvements. In Section 2, we prove existence and uniqueness of solution for the 
obtained model, and in Section 3 we perform the high-field limit. In particular, we will obtain closed relations 
between the averaged chemical substances involved in cell movement and the respective concentration in 
the ECM.

1.1. The multiscale model

Concerning the two processes introduced before, haptotaxis and chemotaxis, we find two different chemi-
cal compounds in the ECM (see [9] for details), each one related to one type of cell-environment interaction: 
An oriented protein fiber, responsible of haptotaxis, and a chemical compound coming from degeneration of 
the aforesaid fibers, responsible for chemotaxis. We denote Q(t, x, θ) the density of protein fibers at time t

and position x, oriented towards θ ∈ S
n−1 for some n ≥ 1. The density of protein fibers at time t and 

position x is denoted by Q̄(t, x):

Q̄(t, x) :=
∫

Sn−1

Q(t, x, θ)dθ.

Finally, denote L(t, x) the concentration of the other chemical compound, a proteolytic product coming 
from degradation of ECM fibers. From now on, we will use the same notation for the compounds and for 
their densities and concentrations. We will call them the Q̄ and L compounds, respectively.

The final model is a system consisting of a kinetic model for the cell population (stemming from KTAP) 
and two macroscopic reaction and reaction–diffusion equations for the chemical compounds. The cell pop-
ulation will be treated as a system of active particles, meanwhile macroscopic models are used for the 
chemicals. At this point, the aforesaid improvements to the model in [9] are introduced, including a reaction 
term which takes into account the balance mass of the compounds due to the chemical reactions produced 
in the cell surface.

We describe the cell population by means of a standard distribution function f(t, x, v, y) depending on 
time t, space x, velocity v and activity y (which will be described below), verifying the following equation 
deduced in [9],

∂f

∂t
+ v · ∇xf + ∇y · (G(y, Q̄, L)f) = H(f,Q) + L(f) + C(f, L), (1)
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