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The purpose of this paper is twofold. Firstly we investigate the distribution, 
simplicity and monotonicity of the zeros around the unit circle and real line of 
the real self-reciprocal polynomials R(λ)

n (z) = 1 +λ(z+ z2 + · · ·+ zn−1) + zn, n ≥ 2
and λ ∈ R. Secondly, as an application of the first results we give necessary and 
sufficient conditions to guarantee that all zeros of the self-reciprocal polynomials 
S
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s
(λ)
n,n/2 = (n/2)λ when n is even, lie on the unit circle, solving then an open problem 

given by Kim and Park in 2008.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let the polynomial P (z) =
n∑

i=0
aiz

i, ai ∈ C. Define the polynomial

P ∗(z) = znP

(
1
z̄

)
= ā0z

n + ā1z
n−1 + · · · + ān = ā0

n∏
j=1

(z − z∗j ),

whose zeros z∗k are the inverses of the zeros zk of P (z), that is, z∗k = 1/z̄k.
If P ∗(z) = uP (z) with |u| = 1, then P (z) is said to be a self-inversive polynomial, see [19]. If P (z) =

znP (1/z), then P (z) is said to be self-reciprocal. If ai ∈ R, then P (z) is called real self-reciprocal polynomial, 
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see [14]. Notice that real self-reciprocal polynomials are also self-inversive polynomials. It is clear that if 
P (z) is a self-reciprocal polynomial, then ai = an−i, for i = 0, 1, . . . , n.

The properties of self-reciprocal polynomials are interesting topics to study and have many applications 
in some areas of mathematics, see for example [9–11,13].

It is not difficult to verify that if a polynomial has all its zeros on the unit circle, then it is a self-inversive 
polynomial. The reciprocal is not always true, since self-inversive polynomials can have zeros that are 
symmetric with respect to the unit circle. The most famous result about the conditions for a self-inversive 
polynomial to have all its zeros on the unit circle is due to Conh, see [19, p. 18]: A necessary and sufficient 
condition for all the zeros of P (z) to lie on the unit circle is that P (z) is self-inversive and that all zeros 
of P ′(z) lie in or on this circle. In [4], Chen has given more flexible conditions than the Cohn’s result. 
Choo and Kim in [7] gave an extension of Chen’s result, to guarantee that the zeros on the unit circle 
are simple. Many authors have investigated special classes of self-inversive polynomials, see for example 
[14–17].

In [14], Kim and Park investigate the distribution of zeros around the unit circle of real self-reciprocal 
polynomials of even degree with five terms whose absolute values of middle coefficients equal the sum of all 
other coefficients. As a consequence of this study, they present a result related to the location of the zeros 
of the real self-reciprocal polynomial S(λ)

n (z) =
∑n

k=0 s
(λ)
k zk, with s(λ)

k = 1 + kλ, for k = 1, 2, . . . , �n/2� ,
for n odd and some values of λ ∈ R (see [14, Th. 7]). The authors remarked that for the three cases 
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result when n is even. Precisely, we will deal with the polynomials
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The proofs of these results are obtained using properties of the polynomials

R(λ)
n (z) = 1 + λ(z + z2 + · · · + zn−1) + zn, n ≥ 2, (3)

with λ ∈ R, studied in [1].
We denote the unit circle by C = {z : z = eiθ, 0 ≤ θ ≤ 2π}. For z = eiθ with 0 ≤ θ ≤ 2π, we consider the 

transformation

x = x(z) = z1/2 + z−1/2

2 = cos(θ/2). (4)

In the context of orthogonal polynomials, see [6,12], the transformation (4) was first used by Delsarte 
and Genin in [8], and later, was further explored by Zhedanov in [23]. We also consider and present some 
properties of the zeros of the polynomials W (λ)

n (x) defined by

W (λ)
n (x) = W (λ)

n (x(z)) = z−n/2R(λ)
n (z), for n ≥ 1. (5)
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