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Primary matrix functions and spectral functions are two classes of orthogonally 
invariant functions on a symmetric matrix argument. Many of their properties 
have been investigated thoroughly and find numerous applications both theoretical 
and applied in areas ranging from engineering, image processing, optimization 
and physics. We propose a family of maps that provide a natural connection and 
generalization of these two classes of functions. The family of maps also contains 
the well-known multiplicative and additive compound matrices. We explain when 
each member of this family is a differentiable function and exhibit a formula for its 
derivative.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Denote by Rn×n the space of all n ×n matrices with real entries and by Sn the Euclidean space of all n ×n

symmetric matrices with inner product 〈X, Y 〉 := tr (XY ) and corresponding norm ‖X‖ :=
√

tr (X2). Let 
On denote the set of n × n orthogonal matrices. That is, X ∈ On if XXT = I. Let Rn

≥ be the convex cone 
in Rn of all vectors with nonincreasing components, i.e., x ∈ Rn

≥ implies x1 ≥ x2 ≥ · · · ≥ xn. We denote 
by λ(X) ∈ Rn

≥ the vector of eigenvalues of X ∈ Sn in nonincreasing order:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

For a vector x ∈ Rn, denote by Diag x the n × n matrix with x on its main diagonal and zeros everywhere 
else. For a matrix X ∈ Sn, denote by diagX the vector in Rn of diagonal entries of X.
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In the last several decades, interest in functions on the space of symmetric matrices has exploded. Two 
of the more prominent classes of functions are the following primary matrix functions and the spectral 
functions.

Definition 1.1. Every function f : R → R defines a primary matrix function F : Sn → Sn by

F (X) = U
(
Diag (f(λ1(X)), . . . , f(λn(X)))

)
UT ,

where U ∈ On is such that X = U(Diag λ(X))UT .

Extensive treatment of the primary matrix functions is given in [9, Chapter 6] and in [1, Chapter V]. 
The primary matrix functions are also known as Lowener operators. Different variational properties of the 
primary matrix functions have been of main interest. The classical works [4] and [3], when restricted to 
the space of real symmetric matrices, describe the k-th order derivative of the function t ∈ R → F (X(t)), 
where X(t) ∈ Sn is a k-times continuously differentiable curve of symmetric matrices. This is known as 
the Daleckii–Krein formula. One can find a surprisingly different approach in [14], where Theorem 4.1 
removes the requirement that dk

dtk
X(t) be continuous in order to conclude that t ∈ R → F (X(t)) is k-times 

differentiable. Naturally, treating the whole matrix X as an independent variable, brings larger generality. 
We say a function is symmetric if its value is invariant under permutations of its arguments.

Definition 1.2. A real-valued function F : Sn → R is a spectral function if there exists symmetric function 
f : Rn → R such that F (X) = (f ◦ λ)(X) for all X ∈ Sn.

Spectral functions have received much attention in the last twenty years and find numerous applications 
both theoretical and applied. The literature on the subject is vast and goes out of the scope of this paper to 
survey it thoroughly. In engineering they often appear as constraints in feasibility problems (for example, 
in the design of tight frames [22] or in the design of low-rank controllers [17] in control). Among the more 
notable optimization related works are [2] and [20]. For recent theoretical developments see [5] and [6]. Works 
dealing with higher-order differentiability of spectral functions are [23,21,19,18]. In engineering literature, 
spectral functions are also known as isotropic functions.

One of the main results in [10], among other places, states the following.

Theorem 1.1. The spectral function F (X) = (f ◦λ)(X) is differentiable at X if and only if f is differentiable 
at λ(X) and in that case

∇F (X) = UT
(
∇f(λ(X))

)
UT , (1)

where U ∈ On is such that X = U(Diag λ(X))UT .

The type of orthogonal invariance possessed by the primary matrix functions and the spectral functions 
indicates that there must be a natural connection between them. One such connection is a consequence of 
Theorem 1.1. Indeed, consider the separable symmetric function

f(x1, . . . , xn) = g(x1) + · · · + g(xn),

where g : R → R. Then, the derivative of the corresponding spectral function F (X) = (f ◦ λ)(X) is

∇F (X) = U
(
Diag (g′(λ1(X)), . . . , g′(λn(X)))

)
UT , (2)
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