

Embeddability of homeomorphisms of the circle in set-valued iteration groups

Dorota Krassowska, Marek Cezary Zdun ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Institute of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland

A R T I C L E I N F O

Article history:

Received 31 January 2015
Available online 21 August 2015
Submitted by M. Laczkovich

Keywords:

Iteration groups
Flows
Set-valued functions
Functional equations limit sets
Fractional iterates
Homeomorphisms of the circle

Abstract

Let $F: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a homeomorphism without periodic points. It is known that F is embeddable in a continuous iteration group if and only if F is minimal. We deal with F which is not minimal. In this case, F satisfying some additional assumptions can be embedded but only in a nonmeasurable iteration groups. There are infinitely many such nonmeasurable groups. We propose here a new approach to the problem of embeddability. For a given homeomorphism F without periodic points we construct some substitute of an iteration group, namely the unique special set-valued iteration group $\left\{F^{t}: \mathbb{S}^{1} \rightarrow c \mathrm{cc}\left[\mathbb{S}^{1}\right], t \in \mathbb{R}\right\}$, which is regular in a sense and in which F can be embedded i.e. $F(x) \in F^{1}(x)$. We also determine a maximal countable and dense subgroup $T \subset \mathbb{R}$ such that $\left\{F^{t}: \mathbb{S}^{1} \rightarrow \mathrm{cc}\left[\mathbb{S}^{1}\right], t \in T\right\}$ has a continuous selection $\left\{f^{t}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, t \in T\right\}$ being the best regular embedding of F. If there exists a nonmeasurable embedding $\left\{f^{t}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, t \in \mathbb{R}\right\}$ of F, then there exists an additive function $\gamma: \mathbb{R} \rightarrow T$ such that $f^{t}(z) \in F^{\gamma(t)}(z), t \in \mathbb{R}$. We determine a unique maximal subgroup T with this property.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Notions and basic facts.
Let $\mathbb{S}^{1}:=\{z \in \mathbb{C},|z|=1\}$ be the unit circle with positive orientation and $c c\left[\mathbb{S}^{1}\right]$ be the family of all nonempty convex and compact subsets of \mathbb{S}^{1}, that is the family of closed arcs and points of \mathbb{S}^{1}. Let $F: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a homeomorphism without periodic points, which is equivalent to the fact that its rotation number ϱ_{F} is irrational.

A family $\left\{f^{t}, t \in \mathbb{R}\right\}$ of homeomorphisms $f^{t}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ such that

$$
f^{t} \circ f^{s}=f^{t+s}, \quad t, s \in \mathbb{R}
$$

[^0]is said to be an iteration group or a flow. If for every $z \in \mathbb{S}^{1}$ the mapping $t \rightarrow f^{t}(z)$ is continuous then iteration group is said to be continuous. A homeomorphism F is said to be (continuously) embeddable if there exists a (continuous) iteration group $\left\{f^{t}, t \in \mathbb{R}\right\}$ such that $f^{1}=F$. This iteration group is said to be the embedding of F.

It is known that the set $L_{F}:=\left\{F^{n}(z), n \in \mathbb{Z}\right\}^{d}$, the set of limit points of orbits of F, does not depend on the choice of $z \in \mathbb{S}^{1}$ and L_{F} either equals \mathbb{S}^{1} or L_{F} is a nowhere dense perfect set (see e.g. [6]). A homeomorphism F is continuously embeddable if and only if F is minimal, that is when $L_{F}=\mathbb{S}^{1}$. Then continuous embedding is unique up to a constant (see [13]). We deal with the case $L_{F} \neq \mathbb{S}^{1}$. In such a case F may possess embeddings but nonmeasurable with respect to the time parameter t. K. Ciepliński in [2] gave the necessary and sufficient condition for embeddability in the discontinuous iteration groups. In this case F has infinitely many nonmeasurable embeddings.

For a given homeomorphism without periodic points we construct some substitution of an iteration group, namely the special set-valued iteration group $\left\{F^{t}: \mathbb{S}^{1} \rightarrow \mathrm{cc}\left[\mathbb{S}^{1}\right], t \in \mathbb{R}\right\}$ and a countable and dense subgroup $T \subset \mathbb{R}$ such that $\left\{F^{t}: \mathbb{S}^{1} \rightarrow \mathrm{cc}\left[\mathbb{S}^{1}\right], t \in T\right\}$ has a continuous selection $\left\{f^{t}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, t \in T\right\}$ being an embedding of F restricted to T possessing several regular properties. We determine a unique maximal subgroup T with the above mentioned properties. The idea of generalized embedding called phantom iterates has been presented and widespread by Gy. Targonski (see [10,11]). He considered another approach using the semigroups of Koopman operators. In this note we apply the set-valued iteration semigroups. These semigroups were introduced and studied in a very general case by A. Smajdor in [9] (see also [7,8,15]).

2. Preliminaries

Let $\Pi(t):=\left(e^{2 \pi i t}\right)_{\mid[0,1)}$. If $u, w, z \in \mathbb{S}^{1}$, then there exist unique $t_{1}, t_{2} \in[0,1)$ such that $w \Pi\left(t_{1}\right)=z$ and $w \Pi\left(t_{2}\right)=u$. Introduce a cyclic order \prec on the circle (see [1])

$$
u \prec w \prec z \text { if and only if } 0<t_{1}<t_{2}
$$

and

$$
u \preceq w \preceq z \text { if and only if } t_{1} \leq t_{2} \text { or } t_{2}=0
$$

We say that $\varphi: D \subset \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is increasing (strictly increasing) if for every $u, w, z \in \mathbb{S}^{1}$ such that $u \prec w \prec z$ we have $\varphi(u) \preceq \varphi(w) \preceq \varphi(z)($ resp. $\varphi(u) \prec \varphi(w) \prec \varphi(z))$.

Note that the rotation functions $R(z)=a z$ for $a \in \mathbb{S}^{1}$ are strictly increasing.
The following generalization of result of Poincare on the solutions of the Schröder equation

$$
\begin{equation*}
\Phi(F(z))=e^{2 \pi i \varrho} \Phi(z), \quad z \in \mathbb{S}^{1} \tag{1}
\end{equation*}
$$

where ϱ is the rotation number of homeomorphism F, will serve as one of the main tools of our investigation (see $[5,12]$).

Proposition 1. If a homeomorphism $F: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ has no periodic points then there exists exactly one continuous solution of equation (1) such that $\Phi(1)=1$. This solution is surjective and increasing. Moreover, Φ is a homeomorphism if and only if $L_{F}=\mathbb{S}^{1}$.

From now $L_{F} \neq \mathbb{S}^{1}$. Since L_{F} is a nowhere dense and perfect set $\mathbb{S}^{1} \backslash L_{F}$ is a countable sum of pairwise disjoint open arcs. Denote the family of these arcs by \mathcal{A}. Denote by $\alpha(I)$ the middle point of the arc $I \subsetneq \mathbb{S}^{1}$ and let $M:=\{\alpha(I), I \in \mathcal{A}\}$. Put $I_{p}:=\alpha^{-1}(p)$ for $p \in M$. Hence we have the decomposition

https://daneshyari.com/en/article/4614946

Download Persian Version:

https://daneshyari.com/article/4614946

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: dkrassow@gmail.com (D. Krassowska), mczdun@up.krakow.pl (M.C. Zdun).

