Value ranges of univalent self-mappings of the unit disc

Julia Koch ${ }^{\text {a }}$, Sebastian Schleißinger ${ }^{\text {b, }, ~}{ }^{\text {, }}$
${ }^{\text {a }}$ University of Würzburg, Germany
b Università di Roma "Tor Vergata", Italy

A R T I C L E I N F O

Article history:

Received 19 August 2015
Available online 1 September 2015
Submitted by D. Khavinson

Keywords:

Pontryagin's maximum principle
Radial Loewner equation
Univalent functions

Abstract

We describe the value set $\left\{f\left(z_{0}\right) \mid f: \mathbb{D} \rightarrow \mathbb{D}\right.$ univalent, $\left.f(0)=0, f^{\prime}(0)=e^{-T}\right\}$, where \mathbb{D} denotes the unit disc and $z_{0} \in \mathbb{D} \backslash\{0\}, T>0$, by applying Pontryagin's maximum principle to the radial Loewner equation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main result

Given a bounded univalent function f on a simply connected domain $\Omega \subsetneq \mathbb{C}$ and two distinct points $a, b \in \Omega$, it is quite natural to ask the question as to which values $f(b)$ can take if $f(a)$ and $f^{\prime}(a)$ are prescribed. Since the Riemann mapping theorem tells us that any such domain Ω can be mapped conformally onto the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ such that a is mapped to 0 , the problem can be restricted to the case of $\Omega=\mathbb{D}$ and $a=0$.

By multiplying with a real constant ≤ 1 and applying an automorphism of \mathbb{D}, we may assume $f: \mathbb{D} \rightarrow \mathbb{D}$ and $f(0)=0$. Then the Schwarz lemma tells us that $\left|f^{\prime}(0)\right| \leq 1$ and $\left|f^{\prime}(0)\right|=1$ if and only if f is the rotation $f(z)=f^{\prime}(0) z$. In order to describe the non-trivial case $\left|f^{\prime}(0)\right|<1$, we can restrict ourselves to the case $f^{\prime}(0) \in(0,1)$ because of rotational symmetry. Thus we consider the set

$$
\mathcal{S}_{T}:=\left\{f: \mathbb{D} \rightarrow \mathbb{D} \text { univalent, } f(0)=0, f^{\prime}(0)=e^{-T}\right\}, \quad T>0 .
$$

In this note, we will determine the value set

$$
V_{T}\left(z_{0}\right)=\left\{f\left(z_{0}\right): f \in \mathcal{S}_{T}\right\}, \quad z_{0} \in \mathbb{D} \backslash\{0\} .
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2015.08.068
0022-247X/© 2015 Elsevier Inc. All rights reserved.

Variations of the set $V_{T}\left(z_{0}\right)=\left\{f\left(z_{0}\right): f \in \mathcal{S}_{T}\right\}$ have been determined by various authors, from the classical setting of the Schwarz and Rogosinski's lemma [8], which concerns itself with holomorphic functions $f: \mathbb{D} \rightarrow \mathbb{D}, f(0)=0$ that fulfill no further conditions, to a recent paper by Roth and Schleißinger [10] that determines the set $\mathcal{V}\left(z_{0}\right)=\left\{f\left(z_{0}\right): f \in \mathcal{S}\right\}$, with the class $\mathcal{S}:=\left\{f: \mathbb{D} \rightarrow \mathbb{D}\right.$ univalent, $\left.f(0)=0, f^{\prime}(0)>0\right\}$. Note that $\mathcal{V}\left(z_{0}\right)=\cup_{T>0} V_{T}\left(z_{0}\right)$.

Our results are analogous to the results of Prokhorov and Samsonova [7], who study univalent selfmappings of the upper half-plane having the so-called hydrodynamical normalization at the boundary point ∞. Finally we note that in [2], the authors consider the set $\left\{\log \left(f\left(z_{0}\right) / z_{0}\right): f: \mathbb{D} \rightarrow \mathbb{C}\right.$ univalent, $f(0)=0,|f(z)| \leq M\}$ for $M>0$. We use a different and more straightforward approach to directly determine the set $V_{T}\left(z_{0}\right)$ by applying Pontryagin's maximum principle to the radial Loewner equation.

In the following, for the sake of simplicity, we assume that $z_{0} \in(0,1)$; for other values of z_{0}, we just consider the function $z \mapsto e^{i \arg z_{0}} f\left(e^{-i \arg z_{0}} z\right)$ instead of f.

Theorem 1. Let $z_{0} \in(0,1)$. For $x_{0} \in[-1,1]$ and $T>0$, let $r=r\left(T, x_{0}\right)$ be the (unique) solution to the equation

$$
\begin{aligned}
& \left(1+x_{0}\right)\left(1-z_{0}\right)^{2} \log (1-r)+\left(1-x_{0}\right)\left(1+z_{0}\right)^{2} \log (1+r)-\left(1-2 x_{0} z_{0}+z_{0}^{2}\right) \log r \\
& \quad=\left(1+x_{0}\right)\left(1-z_{0}\right)^{2} \log \left(1-z_{0}\right)+\left(1-x_{0}\right)\left(1+z_{0}\right)^{2} \log \left(1+z_{0}\right)-\left(1-2 x_{0} z_{0}+z_{0}^{2}\right) \log e^{-T} z_{0}
\end{aligned}
$$

and let

$$
\sigma\left(T, x_{0}\right)=\frac{2\left(1-z_{0}^{2}\right) \sqrt{1-x_{0}^{2}}}{1-2 x_{0} z_{0}+z_{0}^{2}}\left(\operatorname{arctanh} z_{0}-\operatorname{arctanh} r\left(T, x_{0}\right)\right) .
$$

Furthermore, for fixed $T \geq 0$, define the two curves $C_{+}\left(z_{0}\right)$ and $C_{-}\left(z_{0}\right)$ by

$$
C_{ \pm}\left(z_{0}\right):=\left\{w_{ \pm}\left(x_{0}\right):=r\left(T, x_{0}\right) e^{ \pm i \sigma\left(T, x_{0}\right)}: x_{0} \in[-1,1]\right\} .
$$

Then, if arctanh $z_{0}<\frac{\pi}{2}, V_{T}\left(z_{0}\right)$ is the closed region whose boundary consists of the two curves $C_{+}\left(z_{0}\right)$ and $C_{-}\left(z_{0}\right)$, which only intersect at $x_{0} \in\{-1,1\}$.

For $\operatorname{arctanh} z_{0} \geq \frac{\pi}{2}$, there are two different cases: First assume that T is large enough that the equation

$$
\begin{equation*}
\frac{2\left(1-z_{0}^{2}\right) \sqrt{1-x^{2}}}{1+2 x z_{0}+z_{0}^{2}}\left(\operatorname{arctanh} z_{0}-\operatorname{arctanh} r(T, x)\right)=\pi \tag{1.1}
\end{equation*}
$$

admits a solution $x \in[-1,1]$. Then the curves $C_{+}\left(z_{0}\right)$ and $C_{-}\left(z_{0}\right)$ intersect more than twice. There is a $\chi \in(-1,1)$ such that $\widetilde{C}_{+}\left(z_{0}\right) \cup \widetilde{C}_{-}\left(z_{0}\right)$ is a closed Jordan curve, where

$$
\widetilde{C}_{ \pm}\left(z_{0}\right):=\left\{w_{ \pm}\left(x_{0}\right): x_{0} \in[\chi, 1]\right\},
$$

and an $\aleph \in(-1,1)$ such that $\widehat{C}_{+}\left(z_{0}\right) \cup \widehat{C}_{-}\left(z_{0}\right)$ is a closed Jordan curve, where

$$
\widehat{C}_{ \pm}\left(z_{0}\right):=\left\{w_{ \pm}\left(x_{0}\right): x_{0} \in[-1, \aleph]\right\} .
$$

Then $V_{T}\left(z_{0}\right)$ is the closed region whose boundary is $\widetilde{C}_{+}\left(z_{0}\right) \cup \widetilde{C}_{-}\left(z_{0}\right) \cup \widehat{C}_{+}\left(z_{0}\right) \cup \widehat{C}_{-}\left(z_{0}\right)$. For smaller T that do not admit a solution to (1.1), the set $V_{T}\left(z_{0}\right)$ can be described exactly as in the case of $\operatorname{arctanh} z_{0}<\frac{\pi}{2}$.

Figs. 1 and 2 show the evolution of the sets $V_{T}\left(z_{0}\right)$ over time. Note that $\operatorname{arctanh} z_{0}=\frac{\pi}{2} \Longleftrightarrow z_{0}=$ $\tanh (\pi / 2) \approx 0.917$.

We prove Theorem 1 in Section 2, and in Section 3 we consider the similar problem of describing the value set $\left\{f^{-1}\left(z_{0}\right): f \in \mathcal{S}_{T}\right.$ with $\left.z_{0} \in f(\mathbb{D})\right\}$ for the inverse functions.

https://daneshyari.com/en/article/4614954

Download Persian Version:

https://daneshyari.com/article/4614954

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: sebastian.schleissinger@mathematik.uni-wuerzburg.de (S. Schleißinger).
 ${ }^{1}$ Supported by the ERC grant "HEVO - Holomorphic Evolution Equations" no. 277691.

