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Suppose that a harmonic function h on a finite cylinder vanishes on the curved 
part of the boundary. This paper answers a question of Khavinson by showing 
that h then has a harmonic continuation to the infinite strip bounded by the 
hyperplanes containing the flat parts of the boundary. The existence of this extension 
is established by an analysis of the convergence properties of a double series 
expansion of the Green function of an infinite cylinder beyond the domain itself.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Schwarz reflection principle gives a formula for extending a harmonic function h on a domain Ω ⊂ R
N

through a relatively open subset E of the boundary ∂Ω on which h vanishes, provided E lies in a hyperplane 
(and is a relatively open subset thereof). By the Kelvin transformation there is a corresponding result where 
E lies in a sphere. When N = 2, such a reflection principle holds also when E is contained in an analytic 
arc (see Chapter 9 of [7]). However, when N ≥ 3 and N is odd, Ebenfelt and Khavinson [4] (see also [6] and 
Chapter 10 of [7]) have shown that a reflection law can only hold when the containing real analytic surface 
is either a hyperplane or a sphere.

Now let N ≥ 3, let Ωa be the finite cylinder B′ × (−a, a), where B′ is the open unit ball in RN−1 and 
a > 0, and let Ω = B′ × R. Dima Khavinson raised the following question with the authors:

Question. Given a harmonic function h on Ω which vanishes on ∂Ω, does it follow that h must have a 
harmonic extension to RN?

Although the above results show that there can be no pointwise reflection formula for such an extension, 
this paper will establish that such an extension does indeed exist.
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We will use the notation x = (x′, xN ) to denote a typical point of RN = R
N−1 × R.

Theorem 1. Let h be a harmonic function on Ωa which continuously vanishes on ∂B′ × (−a, a). Then h has 
a harmonic extension h̃ to RN−1 × (−a, a). Further, for any b ∈ (0, a), there is a constant c, depending on 
a, b, N and h, such that ∣∣∣h̃(x)

∣∣∣ ≤ c ‖x′‖1−N/2 (x′ ∈ R
N−1\B′, |xN | < b). (1)

It is a classical fact that the Green function for a three-dimensional infinite cylinder can be represented 
as a double series involving Bessel functions and Chebychev polynomials: see, for example, p. 62 of Dougall 
[3] or p. 78 of Carslaw [2]. Our approach to proving Theorem 1 involves establishing such a double series 
representation in N dimensions and analysing its convergence properties outside the cylinder.

2. Preparatory material

Let Jν and Yν denote the usual Bessel functions of order ν ≥ 0 of the first and second kinds (see 
Watson [12]). Thus these functions both satisfy the differential equation

z2 d
2y

dz2 + z
dy

dz
+ (z2 − ν2)y = 0. (2)

Further, let (jν,m)m≥1 denote the sequence of positive zeros of Jν , in increasing order. We collect below 
some facts that we will need.

Lemma 2. (i) d

dz
zνJν(z) = zνJν−1(z) and 

d

dz

Jν(z)
zν

= −Jν+1(z)
zν

.

(ii) Jν−1(z) + Jν+1(z) =
2νJν(z)

z
and Jν−1(z) − Jν+1(z) = 2J ′

ν(z).

(iii) Jν(t)Y ′
ν(t) − Yν(t)J ′

ν(t) =
2
πt

(t > 0).

(iv) {Jν(t)}2 + {Yν(t)}2
<

2
π

(
t2 − ν2)−1/2 (t > ν ≥ 1

2 ).

(v) |Jν(t)| ≤
(
t

2

)ν 1
Γ(ν + 1) (t ≥ 0).

(vi) j0,m ≥ (m + 3/4)π.
(vii) jν,m ≥ j0,m + ν.
(viii) |Jν(t)| < ν−1/3 (ν > 0, t ≥ 0).
(ix) |Jν(t)| ≤ min{1, t−1/3} (t > 0).
(x) {Jν(t)}2 + {Yν(t)}2

<
2
πt

(0 ≤ ν ≤ 1
2 , t > 0).

Proof. (i) and (ii). See p. 45 of Watson [12].
(iii) See p. 76, (1) of [12].
(iv) See p. 447, (1) of [12].
(v) See p. 49, (1) of [12].
(vi) See p. 489 of [12].
(vii) See Laforgia and Muldoon [8], (2.4).
(viii) See Landau [9].
(ix) We know from p. 406, (10) of [12] that |Jν | ≤ 1, and from [9] that |Jν(t)| ≤ t−1/3.
(x) By Section 13.74 of [12] the function t �→ t 

(
{Jν(t)}2 + {Yν(t)}2

)
is non-decreasing when 0 ≤ ν ≤ 1

2 , 
and has limit 2/π at ∞. �
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