Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Spectral invariants of periodic nonautonomous discrete dynamical systems

CrossMark

霐

João Ferreira Alves^{a,*}, Michal Málek^b, Luís Silva^c

 ^a Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
 ^b Mathematical Institute in Opava, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic

^c CIMA-UE, Departmental Area of Mathematics, ISEL – Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal

A R T I C L E I N F O

Article history: Received 4 August 2014 Available online 20 April 2015 Submitted by J. Bonet

Keywords: Nonautonomous discrete dynamical systems Interval maps Zeta functions Spectral invariants Topological entropy

ABSTRACT

For an interval map, the poles of the Artin–Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power $[\zeta_F(z)]^p$ of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function $\zeta_f(z)$ only has poles in the unit disk, in the p-periodic nonautonomous case [$\zeta_F(z)$]^p may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [$\zeta_F(z)$]^p in this context. As we will see, these zeros play an important role in the spectral classification of these systems.

© 2015 Elsevier Inc. All rights reserved.

1. Motivation and statement of main results

A large part of mathematical models appearing in discrete dynamical systems for approaching applied situations coming from Biology, Physics, Economy, ... are governed by a single map. However too often this approach is not realistic because there are a lot of processes involving different responses according to the different steps of them. Thus it is necessary to model these systems with more than a map.

Nonautonomous discrete dynamical systems generated by *p*-periodic sequences of maps, called in literature as *p*-periodic discrete systems or *p*-periodic difference equations, have been attracting the attention of many authors, see e.g. among others: [2,5,8-14,18].

The notion of topological entropy of a nonautonomous discrete dynamical system, introduced by Kolyada and Snoha in [16], is deeply related with the main goal of this work: the study of the periodic structure of

* Corresponding author.

E-mail addresses: jalves@math.tecnico.ulisboa.pt (J.F. Alves), Michal.Malek@math.slu.cz (M. Málek), lfs@adm.isel.pt (L. Silva).

a one-dimensional *p*-periodic discrete system from the spectral point of view. That is, we are interested in the invariants of a *p*-periodic system, *F*, that can be detected by the analytic properties of its zeta function, $\zeta_F(z)$ (an analogue of the Artin–Mazur zeta function of an autonomous system).

In [17], Milnor and Thurston proved that, under some instability conditions, the Artin–Mazur zeta function, $\zeta_f(z)$, of an autonomous system generated by a continuous and piecewise monotone interval map f is meromorphic in the open unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. Meanwhile, an analogue of this theorem for nonautonomous periodic discrete systems was presented in [4]: it was proved that, for a p-periodic discrete system F, under similar instability conditions, the function $[\zeta_F(z)]^p$ (the p-th power of the zeta function of F) is meromorphic in D.

In the same paper it was also observed that, unlike in the autonomous case where the meromorphic function $\zeta_f(z)$ has no zeros in D, in the nonautonomous p-periodic case the function $[\zeta_F(z)]^p$ may exhibit zeros. Since the poles of $[\zeta_F(z)]^p$ are invariants of the system, the so-called spectral invariants, the main objective of this paper is to understand the role played by these zeros in its spectral classification.

A brief but more detailed description of the main ideas of [4] will help us to understand the context of the main results of this paper.

Let $I \subset \mathbb{R}$ be a compact interval and $\mathbb{N} = \{0, 1, 2, ...\}$ be the set of nonnegative integers. A continuous map $f: I \to I$ is said to be piecewise monotone (for short a *cpm* map on *I*) providing that there exists a finite family of subintervals $J_1, \ldots, J_k \subseteq I$ covering *I* such that *f* is strictly monotonic on each J_i . As usual the *n*-th iterate, $f^{\circ n}$, of a *cpm* map $f: I \to I$ is defined as the composition of *f* with itself *n* times.

By a discrete dynamical system on I (for short a discrete system) we mean a sequence $(f_i)_{i \in \mathbb{N}}$ of cpm maps on I satisfying the following condition: Every crossing set

$$C_{ij} = \{x \in I : f_i(x) = f_j(x)\}, \text{ for } i, j \in \mathbb{N},$$
(1)

is a finite union of compact intervals.¹

A discrete system $(f_i)_{i \in \mathbb{N}}$ is called *p*-periodic, if the sequence of maps $(f_i)_{i \in \mathbb{N}}$ is periodic with minimal period $p \in \mathbb{Z}^+$. A 1-periodic discrete system is also called autonomous, otherwise we call it nonautonomous. By abuse of language we use the same symbol, f, to denote a *cpm* map $f : I \to I$ and the corresponding autonomous discrete system. We reserve the symbol F to denote any discrete system (periodic or not).

Let $F = (f_i)_{i \in \mathbb{N}}$ be a discrete system. For each $n \in \mathbb{N}$ one defines the *n*-th iterate of F as the *cpm* map $g_n : I \to I$ given inductively by

$$g_0 = id_I$$
 and $g_{n+1} = f_n \circ g_n$ for $n \in \mathbb{N}$.

The trajectory of a point $x \in I$ under F, is the sequence $(x_i)_{i=0}^{+\infty}$, defined by $x_i = g_i(x)$ for all $i \in \mathbb{N}$. A point $x \in I$ is called a periodic point of F with period $n \in \mathbb{Z}^+$ if the trajectory of x is a periodic sequence and n is one (not necessarily the smallest one) of its periods. We write $\operatorname{Per}(F, n)$ for denoting the set of periodic points of F with period $n \in \mathbb{Z}^+$ and $\operatorname{Per}(F)$ for the set of periodic points of F, i.e.,

$$\operatorname{Per}(F,n) = \{x \in I : g_{i+n}(x) = g_i(x) \text{ for all } i \in \mathbb{N}\}$$

and

$$\operatorname{Per}(F) = \bigcup_{n \in \mathbb{Z}^+} \operatorname{Per}(F, n).$$

Notice that, the inclusion

¹ Degenerated compact intervals, $J = \emptyset$ or $J = \{c\}$, are allowed. Hence, some of the crossing sets of a *p*-piecewise monotone dynamical system can be finite or even empty.

Download English Version:

https://daneshyari.com/en/article/4614970

Download Persian Version:

https://daneshyari.com/article/4614970

Daneshyari.com