Upper bounds on the eigenvalue ratio for vibrating strings

Min-Jei Huang
Department of Mathematics, National Tsing Hua University, Hsinchu 30043, Taiwan

A R T I C L E I N F O

Article history:
Received 14 November 2014
Available online 5 May 2015
Submitted by S.A. Fulling
Keywords:
Upper bound
Eigenvalue ratio
Vibrating string
Density
Spectrum
Commutation formula

Abstract

We apply a commutation formula of Deift to study the eigenvalue ratios of vibrating strings with fixed endpoints. Some new results on the upper bounds of the eigenvalue ratio are established.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider two bounded linear operators A and B on a Hilbert space. One shows, by multiplying out, that for each $\lambda \neq 0$ in the resolvent set of $A B$, the operator

$$
\lambda^{-1}\left[B(A B-\lambda)^{-1} A-I\right]
$$

is a two sided inverse of $B A-\lambda$, so that λ also belongs to the resolvent set of $B A$. It follows, by symmetry, that $A B$ and $B A$ have the same spectrum away from zero:

$$
\begin{equation*}
\sigma(A B) \backslash\{0\}=\sigma(B A) \backslash\{0\} . \tag{1.1}
\end{equation*}
$$

Deift [4] gave a proof of an extended version of the commutation formula (1.1) which includes the case where A is a closed, densely defined operator and $B=A^{*}$, its adjoint.

Theorem 1.1. If A is a closed, densely defined linear operator on a Hilbert space with adjoint A^{*}, then $A A^{*}$ and $A^{*} A$ have the same spectrum away from zero. Moreover, if $\lambda \neq 0$ is an eigenvalue of $A A^{*}$

[^0](resp. $\left.A^{*} A\right)$, then λ is also an eigenvalue of $A^{*} A\left(\right.$ resp. $\left.A A^{*}\right)$, and $\mathrm{N}\left(A A^{*}-\lambda\right)$ and $\mathrm{N}\left(A^{*} A-\lambda\right)$ have the same dimension, where N stands for the nullspace.

Commutation formula is a useful tool in finding bounds on eigenvalue ratios. This has been emphasized by Ashbaugh and Benguria in [1] and [3]. For example, it was shown using the commutation formula that $\lambda_{2} / \lambda_{1} \leq 4$ for the ratio of the first two eigenvalues of one-dimensional Schrödinger operators with nonnegative potentials, and equality holds if and only if the potential vanishes identically [1].

In this paper, we want to apply Theorem 1.1 to study the eigenvalue ratios of vibrating strings with fixed endpoints. We consider the following eigenvalue problem:

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+\lambda \rho(x) u(x)=0 \quad \text { in }(a, b) \tag{1.2}\\
u(a)=u(b)=0
\end{array}\right.
$$

where $\rho(x)$ is a positive continuous function and represents the mass density. As is well known, the eigenvalues of (1.2) form a strictly increasing sequence of positive numbers:

$$
0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots
$$

We shall be concerned with the ratio of the first two eigenvalues of (1.2). Our main result is:
Theorem 1.2. Let $\alpha>1 / 2$. Suppose that ρ is twice differentiable and that either

$$
\begin{equation*}
\rho(x) \rho^{\prime \prime}(x) \geq \frac{1}{(\alpha-2)^{2}}\left[\alpha^{2}-8 \alpha+6+\sqrt{\alpha(\alpha+4)(2 \alpha-1)}\right]\left[\rho^{\prime}(x)\right]^{2} \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho(x) \rho^{\prime \prime}(x) \leq \frac{1}{(\alpha-2)^{2}}\left[\alpha^{2}-8 \alpha+6-\sqrt{\alpha(\alpha+4)(2 \alpha-1)}\right]\left[\rho^{\prime}(x)\right]^{2} \tag{1.4}
\end{equation*}
$$

for all x in (a, b). Then

$$
\begin{equation*}
\frac{\lambda_{2}}{\lambda_{1}} \leq \frac{\alpha(\alpha+4)}{(2 \alpha-1)} \tag{1.5}
\end{equation*}
$$

Remark 1.1. (a) The minimum of the right-hand side of (1.5) for $\alpha>1 / 2$ occurs at $\alpha=2$ and is 4 . When $\alpha=2$, the condition (1.3) is to be understood as follows:

$$
\begin{aligned}
\rho \rho^{\prime \prime} & \geq \lim _{\alpha \rightarrow 2} \frac{1}{(\alpha-2)^{2}}\left[\alpha^{2}-8 \alpha+6+\sqrt{\alpha(\alpha+4)(2 \alpha-1)}\right]\left(\rho^{\prime}\right)^{2} \\
& =\frac{5}{4}\left(\rho^{\prime}\right)^{2} .
\end{aligned}
$$

Under this condition, the eigenvalue ratio satisfies $\lambda_{2} / \lambda_{1} \leq 4$.
(b) It is a result of Ashbaugh and Benguria [2] that if $\rho^{-1 / 4}$ is concave, then $\lambda_{n} / \lambda_{1} \leq n^{2}$. We note that if ρ is twice differentiable, then the concavity of $\rho^{-1 / 4}$ is equivalent to $\rho \rho^{\prime \prime} \geq \frac{5}{4}\left(\rho^{\prime}\right)^{2}$.

Remark 1.2. An elementary calculation shows that

$$
\alpha^{2}-8 \alpha+6+\sqrt{\alpha(\alpha+4)(2 \alpha-1)} \geq 0
$$

for any $\alpha>1 / 2$. Thus, if ρ satisfies the condition (1.3), then ρ must be convex.

https://daneshyari.com/en/article/4614989

Download Persian Version:

https://daneshyari.com/article/4614989

Daneshyari.com

[^0]: E-mail address: mjhuang@math.nthu.edu.tw.
 http://dx.doi.org/10.1016/j.jmaa.2015.04.077
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

