Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Upper bounds on the eigenvalue ratio for vibrating strings

ABSTRACT

ratio are established.

© 2015 Elsevier Inc. All rights reserved.

霐

Min-Jei Huang

Department of Mathematics, National Tsing Hua University, Hsinchu 30043, Taiwan

ARTICLE INFO

Article history: Received 14 November 2014 Available online 5 May 2015 Submitted by S.A. Fulling

Keywords: Upper bound Eigenvalue ratio Vibrating string Density Spectrum Commutation formula

1. Introduction

Consider two bounded linear operators A and B on a Hilbert space. One shows, by multiplying out, that for each $\lambda \neq 0$ in the resolvent set of AB, the operator

$$\lambda^{-1} \left[B \left(AB - \lambda \right)^{-1} A - I \right]$$

is a two sided inverse of $BA - \lambda$, so that λ also belongs to the resolvent set of BA. It follows, by symmetry, that AB and BA have the same spectrum away from zero:

$$\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}.$$
(1.1)

We apply a commutation formula of Deift to study the eigenvalue ratios of vibrating

strings with fixed endpoints. Some new results on the upper bounds of the eigenvalue

Deift [4] gave a proof of an extended version of the commutation formula (1.1) which includes the case where A is a closed, densely defined operator and $B = A^*$, its adjoint.

Theorem 1.1. If A is a closed, densely defined linear operator on a Hilbert space with adjoint A^* , then AA^* and A^*A have the same spectrum away from zero. Moreover, if $\lambda \neq 0$ is an eigenvalue of AA^*

E-mail address: mjhuang@math.nthu.edu.tw.

(resp. A^*A), then λ is also an eigenvalue of A^*A (resp. AA^*), and $N(AA^* - \lambda)$ and $N(A^*A - \lambda)$ have the same dimension, where N stands for the nullspace.

Commutation formula is a useful tool in finding bounds on eigenvalue ratios. This has been emphasized by Ashbaugh and Benguria in [1] and [3]. For example, it was shown using the commutation formula that $\lambda_2/\lambda_1 \leq 4$ for the ratio of the first two eigenvalues of one-dimensional Schrödinger operators with nonnegative potentials, and equality holds if and only if the potential vanishes identically [1].

In this paper, we want to apply Theorem 1.1 to study the eigenvalue ratios of vibrating strings with fixed endpoints. We consider the following eigenvalue problem:

$$\begin{cases} u''(x) + \lambda \rho(x)u(x) = 0 & \text{in } (a,b) \\ u(a) = u(b) = 0, \end{cases}$$
(1.2)

where $\rho(x)$ is a positive continuous function and represents the mass density. As is well known, the eigenvalues of (1.2) form a strictly increasing sequence of positive numbers:

 $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots.$

We shall be concerned with the ratio of the first two eigenvalues of (1.2). Our main result is:

Theorem 1.2. Let $\alpha > 1/2$. Suppose that ρ is twice differentiable and that either

$$\rho(x) \rho''(x) \ge \frac{1}{(\alpha - 2)^2} \left[\alpha^2 - 8\alpha + 6 + \sqrt{\alpha(\alpha + 4)(2\alpha - 1)} \right] \left[\rho'(x) \right]^2$$
(1.3)

or

$$\rho(x) \rho''(x) \le \frac{1}{(\alpha - 2)^2} \left[\alpha^2 - 8\alpha + 6 - \sqrt{\alpha (\alpha + 4) (2\alpha - 1)} \right] \left[\rho'(x) \right]^2$$
(1.4)

for all x in (a, b). Then

$$\frac{\lambda_2}{\lambda_1} \le \frac{\alpha \left(\alpha + 4\right)}{\left(2\alpha - 1\right)}.\tag{1.5}$$

Remark 1.1. (a) The minimum of the right-hand side of (1.5) for $\alpha > 1/2$ occurs at $\alpha = 2$ and is 4. When $\alpha = 2$, the condition (1.3) is to be understood as follows:

$$\rho \rho'' \ge \lim_{\alpha \to 2} \frac{1}{(\alpha - 2)^2} \left[\alpha^2 - 8\alpha + 6 + \sqrt{\alpha (\alpha + 4) (2\alpha - 1)} \right] (\rho')^2$$
$$= \frac{5}{4} (\rho')^2.$$

Under this condition, the eigenvalue ratio satisfies $\lambda_2/\lambda_1 \leq 4$.

(b) It is a result of Ashbaugh and Benguria [2] that if $\rho^{-1/4}$ is concave, then $\lambda_n/\lambda_1 \leq n^2$. We note that if ρ is twice differentiable, then the concavity of $\rho^{-1/4}$ is equivalent to $\rho\rho'' \geq \frac{5}{4} (\rho')^2$.

Remark 1.2. An elementary calculation shows that

$$\alpha^{2} - 8\alpha + 6 + \sqrt{\alpha \left(\alpha + 4\right) \left(2\alpha - 1\right)} \ge 0$$

for any $\alpha > 1/2$. Thus, if ρ satisfies the condition (1.3), then ρ must be convex.

Download English Version:

https://daneshyari.com/en/article/4614989

Download Persian Version:

https://daneshyari.com/article/4614989

Daneshyari.com